
REPORT DOCUMENTATION PAGE FOPM W. 07o-018

Is ourciB' esurriae ,, ary o,., aspect 01 UPS 006eD~n Of wfraon.mf vxk"V suggestiois for % '.th t>,~.~mf to wawrigm
5 efferson Davis Higrway Suds 1204 Affiro, VA 22202-4302 arM to T~ic. CtK 'Of rtirltion A a guorm y Aftans Offios ofoAD-A240 784

PORT DATE 3 REPORT TYPE AND DATES COVEREDi'~I~I~ ~1 i~iI~ii 'h :i~i~i~~iiFinal: 30 Jul 1991 to 01 Jun 1993
4 TITLE AND SuBTiILE 5 FUNDING NUM8ERS

Ada Compiler Validation Summary Report:U.S. NAVY, Ada/L, Version 4.0
(,,OPTIMIZE), VAX 8550(Host) to AN/UYK-43 (Single CPU)(Bare Board)(Target),
910626S1. 11172

6~ AUTHOR(S

National Institute of Standards and Technology
Gaithersburg, MD
USA
7PERFORM NG ORGANIZATION NAMEIS) AND ADDRESSI ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST9OUSN51O_5_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA
9 SPONSOR iNGMON iTOR ING AGENCY NAMEiS) AND ADDRESS1 ES) 10. SPONSORINGIMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon. RM 3E1 14
Washington, D.C. 20301-3081
11 SUPPLEMENTARY NOTES

12a DISTRIBUTION. AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, distribution unlimited.

13 ABSTRACT Maoimum 200 os)

U.S. NAVY, AdaL, Version 4.0 (OPTIMIZE) Gaithersburg, MD, VAX 8550, running VAX/VMS Version 5.3 (Host) to
AN/UYK-43 (Single CPU)(Bare Board)(Target), ACVC 1.11.

19 q 13 111 91-11054

14 7BE RMS 15. NUMBER OF PAGES

Ada programming language. Ada Compiler Val. Summary Report. Ada Compiler Val. 1,PIECD
Capability, Val Testing. Ada Val Office, Ada Val. Facility, ANSI.'MIL-STD-1815A, AJPO. 16PIECE

i 7 SEC-Uq1r
t

'CLASS FCA'iON 18 SECURI TY CLASSIFICATiON 19 S-CURITY CLA.,r-CATION 20 LIMIAONF BTC
OF REPORT IOF ABSTRACT

UNCLASSIFIED UNCLASSIFED IUNCLASSIFIED
NSN 7540 01 290 550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI SWI 239-128

D~ CLAMEINOTli

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

AVF Control Number: NIST90US N510 5_1.11
DATE COMPLETED

BEFORE ON-SITE: 1991-04-05
AFTER ON-SITE: 1991-06-26
REVISIONS: 1991-07-30

Ada COMPILER
VALIDATION SUI'SIARY REPORT:

Certificate Number: 910626S1.11172
U.S. NAVY

Ada/L, Version 4.0 (/OPTIMIZE)
VAX 8550 => AN/UYK-43 (Single CPU) (Bare Board)

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

J .tJ ca, -- -

,J f

I-:

AVF Control Number: NIST90USN510_5_1. 11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on 1991-06-26.

Compiler Name and Version: Ada/L, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 8550, running VAX/VMS Version
5.3

Target Computer System: AN/UYK-43 (Single CPU) (Bare Board)

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
910626S1.11172 is awarded to U.S. NAVY. This certificate expires
on 01 March 1993.

This report has been rsviewed and is approved.

Ad Validation m t Ada Validation Facility
Dr. David K. Je r n Mr. L. Arnold/Johnson
Chief, Informatio, S s ms Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

Ada/a/adation Organization Ada Joint Program Office
; Diiect6r / Computer & Software Dr. John Solomond

Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer: U.S. NAVY

.ertiL.Ludte Aaardee: U.S. NAVY

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada implementation:

Compiler Name and Version: Ada/L, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 8550, running VAX/VMS Version
5.3

Target Computer System: AN/UYK-43 (Single CPU) (Bare Board)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

Customer Signature Date
Company U.S. Navy
Title-

Certificate Awardee Signature Date
Company U.S. Navy
Title

CHAPER 1TABLE OF CONTENTS

INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMflARY REPORT-.

1.2 REFERENCES...................... l

1.3 ACVC TEST CLASSES-
1.4 DEFINITION OF TERMS..............1-3

CHAPTER 2............................2-1
IMPLEMENTATION DEPENDENCIES..............2-

2.1 WITHDRAWN TESTS................2-1
2.2 INAPPLICABLE TESTS...............-
2.23 TEST MODIFICATIONS................2-4

CHAPTER 3............................-
PROCESSING INFOR?!AlN..................3-1

3.1 TESTING ENVIRONI4ENT...............3-1
3.2 SU--MARY OF TEST RESULTS.............3-1
3.3 TEST EXECU:TION..................3-2

APPENDIX A..........................A-!
MACRO PA.PXAMET.ERS......................A-1

APPENDIX B..........................B-1
COMPILATION SYSTEM OPTIONS.................-i
LINKER OPTIONS.......................-2

APPENDIX C................................C-1
APPENDIX F OF THE Ada STANDARD..............C-i

CHATERm' 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83'
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro9O]. A detailed description
cf the ACVC may be found in the current ACVC User's Guide [UG89].

1.! USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
w'ith the "Freedom of Information Act" (5 U.S.C. 4552) . The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation-Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

Ada837 Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

:Pro90' Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Off_--, August 1990.

UG$9' Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACUC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
:Iame identifies the class to which it belongs. Class A, C, D, and
7 tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are execuLed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by
the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largesL integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
nodifications, additional changes may be required to remove
'unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by

1-2

the AVF. This customization consists of making the modifications
dzc::ibed i-rtle preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customize(! test suite according tQ the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executanle form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) complianca of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)
Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the Execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

1-3

Conformity Fulfillment by a product, process or service of
-- -all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance confority is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.

Compiler

Validated Ada An Ada implerentation that has been validated

Implementation successfully either by AVF testing or Oy
registration [Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of

issuing a certificate for this implementation.

withdrawn A test found to be incorrect and not used in
izest conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-4

CHAPTER 2

:MPLEMENTA'ION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are wiohdrawn by the AVO from the ACVC because they do
... confor to the Ada Standard. The following 94 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time or
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
t.is list of withdrawn tests is 91-05-03.

.23005C B28006C C34006D C355081 C35508J C35508M
C35508N C35702A C35702B B41108B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
83025B B83025D B83026B C33026A C83041A B85001L

C36001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BDIB02B BDIB06A AD1BO8A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CD5111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2!!7A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3116A CE3lI&A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.. .::-= CABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
Cs5708L..Y (14 tests) C35802L..Z (15 tests)

2-1

-41 . Y 14 tests) C4532L 7 (14 tests)
-e~'C4552lLT..- i

245.12L . tests) C45521L. . (15 tests)
C405. .C ..Z (15 tests)

,45641L. .714 tests) C460 2. .2 15 tests)

224112H..K 4 tests) use a line length greater than M1,1AX :'4'

735713B, C45423B, B36001T, and C36006H check for the predefined
t':oe SHORT FLOAT; for this implementation, there is no such tvrce.

-'e followi- g 21 tests check for the predefined type SORT ..

o this imclementation, there is no such type:

C35404B B36105C C45231B C45304B C15411 i
C45412B C45502B C45503B C45504B C455Q41
C45611B C45613B C45614B C45631B C4563MB
B52004E C55BO7B B55B09D B86001V C36006D

C35404D, C45231D, B36001X, C36006E, and CD7101G check for a
redefined integer type with a name other than I.TEGEP,

R NTEGER; for this implementation, there is
n o Sun ctvte.

C5l30D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M. .P and C45532M.. P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, there is no such type.

-45624A..B (2 tests) check that the proper exception is raised if
. C H:N OVERFLOWS is FALSE for floating point types for this
implementation, MACHINE OVERFLOWS is TRUE.

386001Y uses the name of a predefined fixed-point type other than
'URATIN; for this implementation, there is no such type.

0D1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
suport such sizes.

=2.84A, CD2A84E, CD2A84I. .J (2 tests), and CD2A840 use length
clauses to specify non-dofault sizes for access types; this
imolementation does not support such sizes.

AE2101C and 5E2201D.. E (2 tests) use instantiations of package
SE uENTIAL 1O with unconstrained array types and record types with

scrlmi-ants wlt'hcut defaults; these instantiations are rejected

2-2

AE21!H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 wqi- unconstrained array types and record types witn
discriminants without defaults; these instantiaticns are rejcte
ty this ccmloier.

Che tests listed in the following table are not applicable because
... ile . eraons are supported for the given combination
f mode and file access method.

Test File Operation Mode File Access Method
CEZ102E CREATE OUT FILE SEQUENTIAL i0
CE2112F CREATE INCUT FILE DIRECT 10
CE2102 CREATE OUT FILE DIRECT IO
CE212N OPEN IN FILE SEQUENTIAL 10
.E2 I.20 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUTFILE SEQUENTIALIO
CE!102Q RESET OUT FILE SEQUENTIAL 10
CE2102R OPEN INOUT FILE DRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT 10
CE2102U RESET IN FILE DIRECT 10
....... OPEN OUT FILE DIRECT IO
CE2132W RESET OUT FILE DIRECT 10
CE3132F RESET Any Mode TEXT _1
CE32G DELETE -------- TEXT 10

-E %I CREATE OUT FILE TEXT 10
CE3102i OPEN IN FILE TEXT 10
CE3102K OPEN OUTFILE TEXTIO

The tests listed in the following table are not applicable because
the given file operations are not supported for the given
combination of mode and file access method.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL 10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE INFILE TEXT_10

The following 19 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the
same external file; USEERROR is raised when this association is
attempted.

CE2107A..H CE2I07L CE2110B CE2110D CE2111D
CE21!iH CE3111A..B CE3111D..E CE3114B CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
ixternal sequential file is exceeded; this implementation cannot
restrict file capacity.

2-3

CE2403A checks that WRITE raises USE ERROR if the capacity of an

external dr-t. file is exceeded; -this implementation cannot
restrict file capacity.

CE3304A checks that SET LINELENGTH and SET PAGE LENGTH raise
USEERROR if they specify an inappropriate value for the external
file; there ar2 no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUTERROR when the value of the
Page number exceeds COUNT'LAST. For this implementation, the value
of COUNT'LAST is greater than 150000 making the checking of this
cbjective impractical.

2,3 TEST MODIFICATIONS

Modifications 'see section 1.3) were required for 44 tests.

The followinq tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B22004A B23004A B24005A B24005B B28003A
B33201C B33202C B33203C B33301B B37106A B37301I
B38003A B38003B B38009A B38009B B44001A B44004A
B54AOlL B55AOlA B61005A B85008G B85008H B95063A
B97103E BB1006B BC1102A BC1109A BC1109B BC1109C
BC1109D BC1201F BC12OIG BC12OIH BC1201I BC12OIJ
BC1201L BC3013A BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRACMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

C34005P and C34005S were graded passed by Test Modification as
directed by the AVO. These tests contain expressions of the form
"I - X'FIRST + Y'FIRST", where X and Y are of an array type with a
lower bound of INTEGER'FIRST; this implementation recognizes that
"X'FIRST + Y'FIRST" is a loop invariant and so evaluates this part
of the expression separately, which raises NUMERICERROR. These
tests were modified by inserting parens to force a different order
of evaluation (i.p., to force the subtraction to be evaluated
1irst) at lines 187 and 262/263, respectively; those modified lines
are:

C->4005P, line 187]

2-4

IF NOT EQUAL (X (I), Y ((I - X'FIRST) + Y'FIPST)) THEN

F-C34 005S, lines 261. .4 (only 262 & 263 were modified)!

IF NOT EQUAL (X (I, J),
Y ((- - X'FIRST) +- Y'FIRST,

(J - X'FIRST(2)) +
Y'FIRST(2))) THEN

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this
Ada implementation system, see:

Mr. Christopher T. Geyer
Fleet Combat Directions Systems Support Activity

Code 81, Room 301D
200 Catalina Blvd.

San Diego, California 92147
619-553-9447

For a point of contact for sales information about this Ada

implementation system, see:

NOT APPLICABLE FOR THIS IMPLEMENTATION

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUM4ARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
'Pro90].

For all processed tests (inapplicable and applicable) , a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3772

b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 304
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

3-1

.r ntal Number of Inapplicable Tests 304 (c+de)
g) Total Number of Tests for ACVC 1.12 4170 (a-b+f)

when this implementation was tested, the tests listed in section
. had been withdrawn because of test errors.

2.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 304
tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were
also processed.

A magnetic tape containing the customized test suite (see
section 1.3) was taken on-site by the validation team for
processing. The contents of the magnetic tape were loaded
directly onto the host computer.

After the test files were loaded onto the host computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system
and executed on the target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B
for a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

FOR /OPTIMIZE the options were:

/SUMMARY /OPTIMIZE /SOURCE /OUT=<filename>

The options invoked by default for validation testing during
this test were:

FOR /OPTIMIZE the options were:

M0 MACHINE CODE NO ATTRIBUTE NO CROSS REFERENCE

NO-DIAGNOSTICS NONOTES PRIVATE LIST CONTAINERGENERATION

3-2

CODEONWARNING NOMEASURE DEBUG CHECKS NOEXECUTIVE

NO_RTE'1LY TRACEBACK iJO_EMR

Test output, compiler and linker listings, and job logs were

captured on magnetic tape and archived at the AVF. Selected

listings examined on-site by the validation team were also

archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG89]. The parameter values are
presented in two tables. The first table lists the values
that are defined in terms of the maximum input-line length,
which is I the value for $MAX IN LEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAXINLEN 120

SBIG IDl (l..V-l => A', V => 'I')

$BIGID2 (I..V-l => A', V => '2')

$BIGID3 (I..V/2 => 'A') & '3' & (1..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' & (1..V-1-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (1..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-I-V/2 => 'A') & 'I' & '"'

$BLANKS (1..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11 :"

$MvAXLEN REALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAX STRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-l

The fon-o-ing table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
---- --

SACOSIZE 32

$ALIGNMENT 4

$COtJNTLAST 2_147_483 647

$DEFAULTMEMS17ZE 1_048_576

$DEFAULTSTORUNIT 32

$DEFAULTSYSNAME ANUYK43

$DELTADOC 2#0.0000_0000_0000_0000_0000 0

000_0000_001#

$ENTRYADDRESS SYSTEM.CLASSIUNHANDLEDADDRE

SS

$ENTRYADDRESS1 SYSTEM.CLASSIIUNHANDLEDADDR

ESS

$ENTRYADDRESS2 SYSTEM.CLASSIIIUNHANDLEDADD

RES S

$FIELDLAST 2_147_483_647

$FILETERMINATORII

SFIXEDNAME NOSUCHFIXEDTYPE

$ FLOATNAME NOSUCHFLOATTYPE

$FORMSTRING fl

$FORM STRING2 "CANNOTRESTRICTFILECAPACITY"I

$GREATERTHANDURATION 131071.5

$GREATERTHANDURATIONBASELAST 131_073.0

$GREATERTHANFLOATBASELAST 7.5E+75

$GREATERTHANFLOAT SAFE LARGE 7.5E+75

A-2

$GREAT HANSHORTFLOATSAFELARGE O.E

$HIGHPRIORITY 15

$ILLEGALEXTERNALFILENAME1 \NODIRECTORY\F ILENAME\

$I LLEGAL _EXTER NAL T1LE NAME2 THIS-FILE-NAME-IS-TOO-LONG-FOR-

MY-SYSTEM

$INAPPROPRIATELINELENGTH -1.

$INAPPROPRIATEPAGE LENGTH -1

SINCLUDEPRAGlA. PRAGMA INCLUDE ("A28006D1. TSTf

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006FI.TSTE")

$INTEGERFIRST -2147483647

$INTEGER-LAST 2147483647

$7-NTEGERLASTPLUS-i 2147483648

S INTERFACELANGUAGE MACRONORMAL

$LESSTHANDURATION -131071.5

$LESSTHANDURATIONBASEFIRST -131_073.0

$LINETERMINATOR ASCII.LF

$LOWPRIORITY 0

$MACHINECODESTATEMENT forrati'(f-lb,0,0,0,0,0,0)

SMACHINE_CODE_TYPE formnati

$1MANTISSADOC 31

$MAXDIGITS 15

$MAXINT 9223372036854775807

$MAXINTPLUS 1 9223372036854775808

SMINTNT -9223372036854775807

$ NAME NO SUCHTYPEAVAILABLE

$1NAME LIST ANUYK43

A-3

41;%A ME SPECIFICATIONI X2120A

$NAIME SPECIFICATION2 X21.20B

$N~aME SPECIFICATION3j X3119A

$NEGBASEDTNT 164FFFFFFFFFFFFFFFD#

SNP'WMEMSIZE 2.048_576

$NEWSTORUNIT 32

SNEWSYSNAME ANUYK43

$PAGETER.MINATOR ASCII.FF

$RECORDDEFINITION record f:i6 bit; a:i3 bit;
k:i3 bit; b: i3 _bit; i: il -bit;
s:i3_-bit; y:i13_bit; end
record;

SRECORD-NAME formatii

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.000048828125

$VARIABLEADDRESS 16#0020#

$VARIABLE ADDRESS1 16#0021#

$VARIABLEADDRESS2 16#0023#

$YOURPRAGMA EXECUTIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

B-1

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation
and not to this report.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond -3

implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristirs of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are --

compiler documentation and not to this report:.
!mplementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483 647 . 2 147 483 647;
type LONGINTEGER is range

-9 223 372 036_354 775 807 .. 9 223 372 036_854 775 307
type FLOAT is digits 6 range .

-(16-0.FFFFF3#E63) .. (16#0.FFFFF8#E63);
type LONG FLOAT is digits 15 range

-(1640.FF FFFF FFFF FFE0#E63) .. (16#0.FF FFFF FFFF FFE0E63);
type DURATION is delta 2.0 ** (-14) range

-131_071.0 .. 131_071.0;

end STANDARD;

C-1

Ada/L PSE Handboo "ersKon .
29 MarCn L99

Appendix F

The Ada Language for the AN/UYK-43 Target

he scurce language accepted by the ccmpiler 's Ada, as
described n :..e Military Standard, Ada Prczgrarming Language,
ANS:!M::-STD-:l5"A-l;83, 7 ebruary 1983 (,,Ada Language

Reference Manua)-

The Ada depni-ion oermi4s certa -n implementaion
dependencies. Each Ada implementation is required to su:ppl a
ccmplete descr:io:n of its dependencies, to De thought of as
Appen.dix t o t-e Ada Language Reference Manual. This sect_= _3
that escriot-zn fo:r tne AN7JYK-43 target.

F.1 Options

There are severaL comoiler options provided oy a-' ALS;N
C::.ilers tna: direczly affect the pragmas defined in tne Ada
Languace Reference Manual. These comoiler opotons currently
ncLu;de -ne U.IECKS and OPT:MIZE cotions which affect -ne SUPPRESS

and OPTM:ZE ragmas, respectively. A complete !lst cf ALS/N
Compiler :t:tons can be found In Section 9.

The CHECKS option enables all run-time error checking for :ne
scurce file being compiled, which can contain one or more
ccm.Loaton unlts. This allows the SUPPRESS pragma to be used 'n
suppre ssng -ne run-time checks discussed in the Ada Ldnguage
Reference Manual, but note that the SUPPRESS pragma(s) must be
aolied to each compilation unit. The NO CHECKS option disables
a-- run-time error checking for all compilation units within tne
source file and is equivalent to SUPPRESSing all run-time checks
witnin every compilation unit.

The OPTIMIZE option enables all compile-time optimizations
for the source file being compiled, which can contain one or more
compilation units. This allows the OPTIMIZE pragma to request
either TIME-oriented or SPACE-oriented optimizations be
performed, but note that the OPTIMIZE pragma must be applied to
each compilation unit. If the OPTIMIZE oraama is not present,
the ALS/N Compiler's Global Optimizer tends to optimize for TIME
over SPACE. The NO OPTIMIZE option disables all compile-time
otlmizations for all compilation units within the source file
regardless of whether or not the OPTIMIZE pragma is present.

:n addition to those compiler options normally provided by
the ALSiN Common Ada Baseline compilers, the Ada/L compiler also
implements the EXECUTIVE, DEBUG, and MEASURE options.

F. Options

iers~oi 3. Ada, - PSE ?HandcccK
29 Marcn 1991

-.t Cc?'-_ cmvier ouo:..on enabl.es pr::cessL-iq of PRAGMA
EX::: C and allcws W-.i of ,;nits ccoi~ed -4 ::nf --'e RE ONIY

-f NO--~U:V --ie se:eon tne c'crnand -ine, tne
crazma n.. e i nored and wi~nave no effect on :ne generazed

--e DEBUG coDier o~~nenabes orocL-ss ing off PACMA DE3U:G
--o Oovi.tde debugging support. :fNO - EBUG is spec--f-ed, --'-e

DBGoraxmas shnaII 'ave no efffect. Prccoran ;-_zs conza_,nina
_7 7 o : raognas and comp~iled witn :he DEB7UG commiler cotion ma v ce

w= p7e : rogram dnits containing DEBUG pr agmas and copea
wi:n tne NO DEBUG cot:on; only tnose orogram un.-ts cormoied w .tn
--ne DEB3UG ootion snal- n-ave accitional DEBUG suoucrt.

Te MEASURE ccomp)-;er option enables run-tirme calls to
.Run-7.oe ?erformance Measurement. Ai'ds (RTAids) to record the
entrance Lnzo al! suborograms whose bodies are in tne
cco 1Lat:cn. Proaram ,;nits compiled with the /MEASURE otio:n rnav
Ice -:.Ked wit .n oro gram -units not comipiled w4ith the /M.EASURE
cct::n; at run-time, only; those subprograms in program units
c,,.7zLeC witn tne ,MEASURE -or-ion snall1 have this additional
MEZASU"R E ou or.

7-02 F.1 Options

Ada, L PSE iandbcoK 3.ers-D
29 March' L39L

F.2 Pragmas

Both imDlementation-defined and Ada language-defined pragmas
are orovided bv all ALSIN compilers. These paragraphs descrze
tne pragmas recognized and orocessed by the Ada/! compiLer. te
syntax defined in Section 2.8 cf the Ada -anguage Reference
Manual allows a pragma as the only e*ement in a compiLation uni -,
before a ccmplation unit, at defined olaces within a comoliatizn

, foll.wng a comoilation unit. Ada/L associates pragmas
with compilation units as follows:

a. If a pragma appears before any compilation 'unit in a
comcilation, it will affect all following compilation "n1:s,
as smecified below and in section 10.1 of the Ada Languace
Reference Manual.

b. If a pragma appears inside a compilation unit, it will be
associated with that compilation unit, and with the listings
associated with that comoilation unit, as described in the
Ada Language Reference Manual, or below.

:f a oragma follows a compilation unit, it will be associated
with the preceding compilation unit, and effects of the
pragma will be found in the container of that compilation
Unit and in the listings associated with that container.

The oragmas MEMORY SIZE, STORAGE UNIT, and SYSTEM NAME are
described in Section 13.7 of the Ada-Language Reference Manual.
They may appear only at the start of the first compilation when
creating a program library. In the ALS/N, however, since program
libraries are created by the Program Library Manager and not by
the compiler, the use of these pragmas is obviated. if they
appear anywhere, a diagnostic of severity level WARNING is
generated.

F.2 Pragmas F-03

Version 3.5 AdaiL PSE HandbooK
29 March 1991

F.2.1 Language-Defined Pragmas

The following notes specify impLementation-speci:fc changes
to those pragmas described in Appendix B of the Ada language
Reference Manual. Unmentioned pragmas are implement~d as defined
in the Ada language Reference Manual.

pragma :NL:NE (arg {,arg});

The arguments designate subprograms. There are three
instances in which the :NL:NE pragma is ignored. Each
of these cases produces a warning message which states
that the :NL:NE did not occur.

a. :f the compilation unit containing the INLINEd
subprogram depends on the compilation unit of its
caller, a routine call is made instead.

b. :f the INLINEd subprogram's compilation unit
depends on the compilation unit of its caller (a
routine call is made instead).

c. -f an immediately recursive subprogram call is made
within the cody of the INLINEd subprogram (the
pragma :NLINE is ignored entirely).

pragma INTERFACE (languagename, subprogram_name);

The language_name specifies the language and type of
interface to be used in calls used to the externally
supplied subprogram specified by subprogramname. The
allowed values for language name are MACRO NORMAL and
MACROQUICK. MACRO NORMAL indicates that parameters
will be passed on the stack and the calling conventions
used for normal Ada subprogram calls will apply.
MACRO QUICK is used in RTLIB routines to indicate that
parameters are passed in registers. See Section 7
"Parameter Passing" for details on the space required
to pass various types of parameters.

You must ensure that an assembly-language body
container will exist in the program library before
linking.

F-04 F.2.1 Language-Defined Pragmas

Ada/L PSE HanddbooK Vers~zn z.
29 Marcn L99

oragma QWCZMUZE (arg);

The argument is either TIME or SPACE. --ME Is
specified, the optimizer concentrates on optimizing
code execution time. :f SPACE is soecified, the
zotimizer concentrates on optimizing code size. The
default is :f the OPTIMIZE option is enabled and pragma
OPTIMIZE is not present, global optimization is stil
performed with the default argument, SPACE. Program
units containing OPTIMIZE pragmas and compiled with :'e
OPTIMIZE option may be linked with program units
containing OPTIMIZE pragmas and compiled with the
NO OPTIM:ZE option; but only those program units
comoiled with the OPTIMIZE option will have global
optimization suooort.

pragma PRIORITY (arg);

The argument is an integer static expression in the
range 0. .15, where 0 is the lowest use-specifiable task
priority and 15 is the highest. If the value of the
argument Is out of range, the pragma will have no
effect other than to generate a WARNING diagnostic. A
value of zero will be used if priority is not defined.
The pragma will have no effect when not specified in a
task (type) specification or the outermost declarative
part of a subprogram. If the pragma appears in the
declarative part of a subprogram, it will have no
effect unless that subprogram is designated as the main
subprogram at link time.

pragma SUPPRESS (arg (,arg});

This pragma is unchanged with the following exceptions:

Suppression of OVERFLOW CHECK applies only to integer
operations; and PRAGMA SUPPRESS has effect only within
the compilation unit in which it appears, except that
suppression of ELABORATION CHECK applied at the
declaration of a subprogram or task unit applies to all
calls or activations.

F.2.1 Language-Defined Pragmas F-05

Version 3.5 Ada/L PSE HandbccK
29 March 1991

F.2.2 Implemet-ation-Defined Pragmas

This paragraph describes the use and meaning of those pragmas
recognized by Ada/L which are not specified in Appendix B of :ne
Ada language Reference Manual.

pragma DEBUG;

This pragma enables the inclusion of full symbolic
information and support for the Embedded Target
Debugger. The DEBUG PRAGMA is enabled by the /DEBUG
command line option and has no effect if this option is
not provided. This pragma must appear within a
compilation unit, before the first declaration or
statement.

pragma EXECUTIVE [(arg)];

This pragma allows you to specify that a compilation
uni: is to run in the executive state of the machine
and/or utilize privileged instructions. The pragma has
no effect if the Compiler option NO EXECUTIVE is
enabled, either explicitly or by default.

If PRAGMA EXECUTIVE is specified without an argument,
executive state is in effect for the compilation unit
and the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
EXECUTIVE (INHERIT) is specified, a subprogram in the
compilation unit inherits the state of its caller and
the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
EXECUTIVE (PRIVILEGED) is specified, the executive
state is in effect and the code generator may generate
privileged instructions for the compilation unit.
Currently, the Ada/L compiler does not generate such
instructions. In the absence of PRAGMA EXECUTIVE, the
compilation unit executes in task state and the code
generator does not generate privileged instructions.
If PRAGMA EXECUTIVE (INTERRUPTCMR) is specified, the
Ada/L compiler generates code which uses executive
state registers instead of task state registers (i.e.
SCI instead of SCT).

PRAGMA EXECUTIVE is applied once per compilation unit,
so its scope is the entire compilation unit. PRAGMA
EXECUTIVE may appear between the context clause and the
outermost unit. If there is no context clause, PRAGMA
EXECUTIVE must appear within that unit before the first
declaration or statement. The placement of the pragma
before the context clause has no effect on any or all
following compilation units. If PRAGMA EXECUTIVE
appears in the specification of a compilation unit, it

F-06 F.2.2 :mplementation-Defrned Pragmas

Ada/L PSE Handbook Vers.on 3.529 March :991

must !!-o appear in the body of that unit, and vice
versa. If the pragma appears in a specification but is
absent from the body, you are warned and the pragma is
effective. If the pragma appears in the body of a
compilation unit, but is absent from the corresponding
specification, you are warned and the pragma has no
effect. PRAGMA EXECUTIVE does not propagate to
subunits. If a subunit is compiled without PRAGMA
EXECUTIVE and the parent of the subunit is compiled
with PRAGMA EXECUTIVE, you are warned and PRAGMA
EXECUTIVE has no effect on the subunit.

pragma FASTINTERRUPTENTRY (entryname, IMMEDIATE);

This pragma provides for situations of high interrupt
rates with simple processing per interrupt, (such as
adding data to a buffer), and where complex processing
occurs only after large numbers of these interrupts
(such as when the buffer is full). This allows for
lower overhead and faster response capability by
restricting you to disciplines that are commensurate
with limitations normally found in machine level
interrupt service routine processing.

pragma MEASURE (extraction set, [arg (,arg}]);

This pragma enables one or more performance measurement
features. Pragma MEASURE specifies a user-defined
extraction set for the Run-Time Performance Measurement
Aids and Embedded Target Profiler. The user-defined
extraction set consists of all occurences pragma
MEASURE throughout the program. Extraction set is a
numeric literal, which is an index into a user-supplied
table. Arg is a variable or a list of variables whose
values are reported at this point in the execution.
These values describe the nature (TYPE) of the values
collected to an independent data reduction program.
Pragma MEASURE is enabled by the /MEASURE command line
option and has no effect if this option is not
provided. This pragma should be applied to a package
body rather than a package specification.

pragma STATIC (INTERRUPTHANDLER TASK);

The pragma STATIC is only allowed immediately after the
declaration of a task body containing an immediate
interrupt entry. The argument is
INTERRUPT HANDLER TASK. The effect of this pragma will
be to allow generation of nonreentrant and nonrecursive
code in a compilation unit, and to allow static
allocation of all data in a compilation unit. This
pragma shall be used to allow for procedures within
immediate (fast) interrupt entries. The effect will be

F.2.2 Implementation-Defined Pragmas F-07

Version 3.5 Ada/L PSE Handbcc
29 March 1991

for the-compiler to generate nonreentrant code for the
affected procedure bodies. :f a STATIC procedure is
called recursively, the program is erroneous.

pragma T:TE (arg);

This is a listing control pragma. it takes a single
argument of type string. The string specified will
appear on te second line of each page of the source
listing produced for the compilation unit within which
it appears. The pragma should be the first lexical
unit to appear within a compilation unit (excluding
comments). If it is not, a warning message is issued.

pragma TRIVIALENTRY (NAME: entry simplename);

This pragma is only allowed within a task specification
after an entry declaration and identifies a
Trivial Entry to the system. A trivial entry
represents a synchronization point, contained in a
normal. Ada task, for rendezvous with a fast interrupt
entry body. The body of a trivial entry must be null.

pragma UNMAPPED (arg (,arg});

The effect of this pragma is for unmapped (i.e., not
consistently mapped within the virtual space)
allocation of data in a compilation unit. The
arguments of this pragma are access types to be
unmapped. if a program tries to allocate more UNMAPPED
space than is available in the physical configuration,
STORAGE ERROR will be raised at run-time. PRAGMA
UNMAPPED must appear in the same declarative region as
the type and after the type declaration.

F-08 F.2.2 Implementation-Defined Pragmas

Ada/L PSE HandbCok Version 1.5
29 Marc- 199:

F.2.3 Smpe of Pragmas

The scope for each pragma previously described as differing
from the Ada Language Reference Manual is given ,be.ow:

DE3G Applies to the compilation unit in which the pragma
appears.

EXECUT:VE Applies to the compilation unit in which the pregma
appears, i.e., to all subprograms and tasKs wit in
the unit. Elaboration code is not affected.
The pragma is not propagated from specifications
to bodies, or from bodies to subunits. The pragma
must appear consistently in the specification,
body, and subunits associated with a library

FAST :NTERRUPTENTRY
Applies to the compilation unit in which the pragma
appears.

:NL:NE Applies only to subprogram names in its
arguments. If the argument is an overloaded
subprogram name, the INLINE pragma applies to
all definitions of that subprogram name which
appear in the same declarative part as the
INLINE pragma.

:NTERFACE Applies to all invocations of the named
imported subprogram.

MEASURE No scope, but a WARNING diagnostic is
generated.

MEMORYSIZE No scope, but a WARNING diagnostic is
generated.

OPTIMIZE Applies to the entire compilation unit in
which the pragma appears.

PRIORITY Applies to the task specification in which it
appears, or to the environment task if it
appears in the main subprogram.

STATIC Applies to the compilation unit in which the pragma
appears.

STORAGEUNIT No scope, but a WARNING diagnostic is
generated.

SUPPRESS Applies to the block or body that contains
the declarative part in which the pragma
appears.

F.2.3 Scope of Pragmas F-09

Version 3.5 Ada/L PSE Handbook
29 March 1991

SYSTEMNAME --".o-scope, but a WARNING diagnostic is
generated.

TIe compilation unit within which the pragma

TR:V:AL ENTRY Aoolies to the compilation unit in which the pragma
appears.

UNMAPPED Aoulis to all objetts of the access type
named as arguments.

F-10 F.2.3 Scope of Pragmas

Ada/L PSE Handbook Version 3.5
29 March L991

F.3 Atti%--utes

The following notes augment the language-required definitions

of the predefined attributes found in Appendix A of the Ada

language Reference Manual.

T'MACH:NE EMAX is 63.

T'MACHINEEMIN is -64.

TMACHNEMANT:SSA is 6.

TMACHINEOVERFLOWS is TRUE.

T'MACHINERADIX is 16.

T MACHINE ROUNDS is FALSE.

F.3 Attributes F-li

Version 3.5 Ada/L PSE Handbock
29 March 1991

F.4 PredefinMi-Language Environment

The predefined Ada language environment consists of the
packages STANDARD and SYSTEM, which are described beicw.

F.4.1 Package STANDARD

The package STANDARD contains the following definitions in
addition to those specified in Appendix C of the Ada Language
Reference Manual.

TYPE boolean IS (false, true);
FOR boolean'SIZE USE 1;

TYPE integer IS RANGE -2 147 483 647 .. 2 147 483 647;
TYPE long_integer IS RANGE -

-9 223 372_036_854_775 807 .. 9_223 372 036 854_775_807;

TYPE float IS DIGITS 6 RANGE
-(16*0.FF FFF8#E63) .. (16#0.FF FFF8*E63);

TYPE long_float IS DIGITS 15 RANGE
-(16*0.FF FFFF FFFF FFEO#E63)
(16#0.FF F2FF FFFF FFEO*E63);

SUBTYPE natural IS integer RANGE 0 integer'LAST;
SUBTYPE positive IS integer RANGE I .. integer'LAST;
SUBTYPE long_natural IS long_integer

RANGE 0 .. long_integer'LAST;
SUBTYPE long_positive IS long_integer

RANGE 1 .. long_integer'LAST;

FOR character'SIZE USE 8;
TYPE string IS ARRAY (positive RANGE <>) OF character;
PRAGMA PACK(string);

TYPE duration IS DELTA 2.0 ** (-14)
RANGE -131 071.0 .. 131 071.0;

-- The predefined exceptions:

constraint error : exception;
numeric error : exception;
programerror : exception;
storageerror : exception;
taskingerror : exception;

F-12 F.4.1 Package STANDARD

Ada/L PSE Handbook Vers'on .5
73 Marcn 199!

F.4.2 ktage SYSTEM

The package SYSTEM for Ada/L is as follows:

TYPE name :S (anuyk43);
sys:emname : CONSTANT system.name := system.anuvk43;
storageunit : CONSTANT := 32;
memory size : CONSTANT := 1 048 576;
TYPE address IS RANGE 0..system.memory_size

-- System Dependent Named Numbers

min int : CONSTANT -((2**63)-1);
max int : CONSTANT (2**63)-1;
max digits : CONSTANT : 15;
max-mantissa : CONSTANT 31;
fine delta : CONSTANT

:= 2#0.0000 0000 0000 0000 0000 0000 0000 001#;
tick :-CONSTANT ?= 4.8828l29e-05;-

-- 1/20480 seconds is the basic clock period.
null addr : CONSTANT address := 0;

-- Other System Dependent Declarations

SUBTYPE smaller integer IS
integer RANGE (integer'FIRST/64)..(integer'LAST/64);

SUBTYPE priority IS integer RANGE 0..15;
TYPE entry_kind is (normal, immediate);

physical memory_size : CONSTANT := 2**31;
TYPE physicaladdress IS

RANGE 0..system.physical memory_size - 1

nullphys_addr : CONSTANT physicaladdress := 0;
TYPE word IS NEW INTEGER;

-- Address clause (interrupt) addresses

ClassIUnhandled address CONSTANT
address := 16#0800#;

Class II Unhandled address : CONSTANT
address := 16#1800#;

CP_OperandMemory_Resumeaddress : CONSTANT
address := 16#1000#;

CPIOCCommandResume address : CONSTANT
address := 16#1100#;

CPinstructionMemory_Resumeaddress : CONSTANT
address := 16#1200*;

CPIOCInterruptCodeResumeaddress : CONSTANT
address := 16#1300#;

CP_Ooerand_Memory_Error_address CONSTANT

F.4.2 Package SYSTEM F-13

Version 3.5 Ada/L PSE HandbOO,(
29 March 1991

address := 6*1400*;
C? :nstructi.onMemory_Er.ror address :CONSTANT

address :=60*1500*;
c?- :oc CommandOp~erand E7rror address :CONSTANT

addresc : L6416004;
:,OCMemorv Error _address CONSTANT

address :=16*17004;
:P -Fault-address :CONSTANT

address := 6*-190#;
70C_Memory_Resume-address :CONSTANT

address := 641A00#;
:ntercomouter Tim.eout-address CONSTANT

address :=-641300#;
Con f4denceTest Fault address CONSTANT

address :=16*lCOO#;
CPU_ 0CMlicroprocessorStop-address :CONSTANT

address :=16*1]D00*;
M4odule_:.nterrurot address :CONSTANT

address :=I6#17E0C*;
Power_-Tolerance-tnterruot address :CONSTANT

address :='6#!1F00*;
Cl "ass ::: jUnhandl-ed address :CONSTANT

address :=-6#2800*;
C?_ llIegal :nst.ruct4-on E-rror-address :CONSTANT

address :=16#2200#;
Priv-leged :-nst*ructi.on Error-address :CONSTANT

address :=16#2300#;
Da-.aPatternBreakpoint-address :CONSTANT

address :=16#2400#;
Operand Breakpoint_Match-address :CONSTANT

Operand Read-address CONSTANT
address :=16*2600#;

DCtJStatus-Interrupt address :CONSTANT
address := 16*2700#;

OpoerandWriteProtection address :CONSTANT
address :=16#2900#;

OperandLimit Protection-address :CONSTANT
address :=16#2A00*;

Instruction BreakpointMatch-address :CONSTANT
address :=16#2B00#;

F- 14 F.4.2 Package SYSTEM

Ada,,! PSE ?andbook Version .
29 Marcn 199!

-- RqT5--inzerruot addresses (16#2B01# .. l6#2BF#)
rtdeoug_pseudo interrup : CONSTANT address =16*2B014;
?M-Ads_pseudoaddress : CONSTANT address 1642310*;

RPD 2nderflow address : CONSTANT
address := 6-2C0Q;:

:nstruc-cn Execute Protection address : CONSTANT
address := 16*2DC*;

nstructin Lmit Protection address : CONSTANT
address := 1642E004;

Precisely Ti-med :nterrupts address CONSTANT
address := -64F00#;

once on7y oti : CONSTANT duration := 0.0;
- Used to indicate that a PT: is not to be peri-dic.

SUBTYPE oti address :S address RANGE 16*2F01#. . 1542F1F7;
TYPE pti state :S (active,inactive,unregistered);

.OC_:llegal CAR :nstruction : CONSTANT addres
:OCMemoryProtection : CONSTANT address 164>2 >2;
:OC Channel Function Error : CONSTANT address 16#3300#;
lCG:2legal Chain Instruction : CONSTANT address 16*3400*;
IOC Confidence Test Fault : CONSTANT address 164380*':
:CC Breakpoint Match : CONSTANT address :1639034;
:CC CP 7nzerruot : CONSTANT address 16*3B00*;
:oC-External :nterrupt Monitor : CONSTANT address
IOC External Function Monitor : CONSTANT address : 642DOO*;
:OC Output Data Monitor : CONSTANT address 16#3E00#:
ICCInputDataMonitor : CONSTANT address 16#3F00#;

SUBTYPE 10 interrupts IS address RANGE
IOC Illegal_CAR Instruction..:OC InputData Monitor;

SUBTYPE channel numbers IS INTEGER RANGE 0..63;

-- The Eollowing exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all implicit
-- checks suppressed (i.e. pragma SUPPRESS or equivalent),
-- explicit checks included as necessary, the appropriate
-- exception raised when required, and then the exception is
-- either handled or the Ada program terminates.

ACCESS CHECK : EXCEPTION;
DISCRIMINANT CHECK : EXCEPTION;
INDEX CHECK : EXCEPTION;
LENGTH CHECK : EXCEPTION;
RANGE CHECK : EXCEPTION;
DIVISION CHECK : EXCEPTION;
OVERFLOW CHECK : EXCEPTION;
ELABORATION CHECK : EXCEPT:ON;
STORAGECHECK : EXCEPTION;

F.4.2 Package SYSTEM

Version 3.5 Ada/'- PSE7 andbcc<
29 Marci 7-991

-- i.oeme-tation-defi-ed exceotions.
-VRESOLVED REFERENCE EXCEPT:ON;
SYIST EM.7 ERRO R :E-XCEPT'ON;
CAPAC:TY E.RROR :E-XC7ETO-:N;

-- heexceot:on CAPACT7Y ERROR is raised ov --'e R':Exec wnen
-- reRun~esoeci-'ied resource 1lim::s are exceecec.

: NCT10N ADDRESS OF7
-re:-urns zte svsz.er.address of tne given Class--
-;nz'.errumt :--or :'-e sceci:-'ed cftanne-.

(Inzerr";0C : :N :0 in te rru ots ;
fo:,r c'annel : 7N ctannel-numbers
RETU1RN address;
-The address --o be used 'n tne
-reoresentation (address) clause.

PRAGMA ':NTERFACE (MIACRONORIHAL ,ADDRESSOF)

* :NC-:ON "AND'
-- returns zne logical 32 b-;: 'AND' between two integers.

(::oerand-a :N intecer;
:Dperand b '-N integer
RETU.RN integer;

PR-AGM.A INTERFACE (MACRO-NORMAL, "AND");

UrNCT:ON "NOT"
-returns t-- 'logical 32 bit 'NOT' of an integer.
(ocerand a ::N integer

)RETURN integer;

PRAGMA :NTERFACE (MACRO NORMAL, "NOT");

71UNCT:ON "OR"
-returns the logical 32 bit 'OR' between two integers.
(operand a : N integer;
Operand b : N integer
RE7TURN integer;

?RAGM4A INTERFACE (MACRO NORMAL, "OR");

F-'-6 F.4.2 PaCkage SYSTEM

AdaiL PSE HandbccK Version .
29 March !39!

F.5 Chayter Set

Ada compilations may be expressed using the following
characters in addition to the basic character set:

ower case letters:

a b c d e f g h i I m n o p q r s t u v w x y z

special characters:

s %? C[]

The folio-ing transliterations are permitted:

a. Exclamation point for vertical bar,

b. Colon for sharp, and

c. Percent for double-quote.

F.5 Character Set

Version 3.5 AdaL PSE Handbcc
29 March 1991

F.6 Declaratten- and Representation Restrictions

Declarations are described in Section 3 of the Ada Languaqe
Reference Manual, and representa:ion specifications are descrvoed
in Section 13 of the Ada Language Reference Manual and discussed
here.

In the following specifications, the capitalized word SIZE
indicates the number of bits used no represent an cojeco of the
type under discussion. The upper case symbols D, L, R,
correspond to those discussed in Section 3.5.9 of the Ada
Language Reference Manual.

F.6.1 Integer Types

Integer types are specified with constraints of the form:

RANGE L...R

where:

R <= SYSTEM.MAX INT & L >= SYSTEM.MIN INT

For a prefix "t" denoting an integer type, length specifications
of the form:

FOR tSIZE USE n

may specify integer values n such that n in 2..64,

R <= 2**(n-l)-l & L >= -(2**(n-l)-l)

or else such that

R <= (2**n)-i & L >= 0

and 1 < n <= 31.

For a stand-alone object of integer type, a default SIZE of 32 is
used when:

R <= 2"*31 - I & L >= -(2**31 - 1)

Otherwise, a SIZE of 64 is used.

For components of integer types within packed composite
objects, the smaller of the default stand-alone SIZE and the SIZE
from a length specification is used.

F-18 F.6.1 Integer Types

Ada/L PSE Handbook Version 2.5
29 March 1991

F.6.2 Fla ting Types

Floating types are specified with constraints of the form:

DIGITS D

where D is an integer in the range I through 15.

For a prefix "t" denoting a floating point type, lengtn
specifications of the form:

FOR t'SIZE USE n;

are permitted only when the integer value n = 22 for D <= 6 or N
= 64 for 7 <= D <= 15.

F.6.3 Fixed Types

Fixed types are specified with constraints of the form:

DELTA D RANGE L..R

where:

MAX (ABS(R), ABS(L))
------------------ <= 2**31 - 1.
actual delta

The actual delta defaults to the largest integral power of 2 less
than or equal to the specified delta D. (This implies that fixed
values are stored right-aligned.)

For fixed point types, length specifications of the form:

for T'SIZE use N;

are permitted only when N in I .. 32, if:

R - actual delta <= 2**(N-1)-l * actual delta, and
L + actual-delta >= -2**(n-l) * actual)Jelta

or

R - actual-delta <= 2**(N)-l * actual-delta, and
L >= 0

F.6.3 Fixed Types F-19

Version 3.5 Ada/L PSE Handbook
29 March 1991

For stand-alo4objects of fixed point type, a default size of 32
.s used. For comDonents of fixed point types within packed
composite objects, the size from the length specification will be
used.

For soecifications of the form:

FOR t'SMALL USE n;

are permitted for any value of X, such that X <= D. X must be
specified either as a base 2 value or as a base 10 value. Nc e
that when X is specified as other than a power of 2, aczua1 de':a
will still be the largest integreal power of two less than X.

F.6.4 Enumeration Types

In the absence of a representation specification for an
enumeration type "t," the internal representation of t'FIRST is
0. The default size for a stand-alone object of enumeration type
"t" is 32, so the internal representations of t'FIRST and t'LAST
both fall within the range:

-(2"*31 - 1) . . 2**31 - I.

For enumeration types, length specifications of the form:

FOR t'SIZE USE n;

and/or enumeration representations of the form:

FOR t USE <aggregate>;

are permitted for n in 2..32, provided the representations
and the SIZE conform to the relationship specified above.

Or else for n in 1..32, is supported for enumeration
types and provides an internal representation of:

t'FIRST >= 0 .. t'LAST <= 2**(t'SIZE) - 1.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE or the SIZE
from a length specification is used.

Enumeration representations for types derived from the
predefined type STANDARD.BOOLEAN will not be accepted, but length
specifications will be accepted.

F-20 F.6.4 Enumeration Types

Ada/i PSE Handbook Version 3.529 Marci 199-1

?.6.5 Acces Types

For access type, "t," length specifications of the form:

FOR t'S!ZE USE n;

will not affect the runtime imolementation of "t," therefore n =

32 is the only value permitted for SIZE, which is the value
returned by the attribute.

For collection size specifications of the form:

FOR t'STORAGESIZE USE n;

for any value of "n" is permitted for STORAGESIZE (and nar
value will be returned by the attribute call). The collection
size specification will affect the implementation of "t" and its
collection at runtime by limiting the number of objects for type
"t" thaz can be allocated.

The value of t'STORAGESIZE for an access type "t" specifies
the maximum number of storage units used for all objects in tne
collecticn for type "t." This includes all space used by the
allocated objects, plus any additional storage required to
maintain the collection.

F.6.6 Arrays and Records

For arrays and records, a length specification of the form:

FOR t'size USE n;

may cause arrays and records to be packed, if required, to
accommodate the length specification. if the size specified is
not large enough to contain any value of the type, a diagnostic
message of severity ERROR is generated.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that the storage space
requirements are minimized at the possible expense of data access
time and code space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..31 from the right. Bit 32 starts at the right of the
next higher numbered word. Each location specification must
allow at least n bits of range, where n is large enough to hold
any value of the subtype of the component being allocated.
Otherwise, a diagnostic message of severity ERROR is generated.
Components that are arrays, records, tasks, or access variables
may not be allocated to specified locations. If a specification

F.6.6 Arrays and Records F-21

Version 3.5 Ada/L PSE HandboCC
29 March 1991

of this form--s-entered, a diagnostic message of severity ERROR

is generated.

For records, an alignment clause of the form:

AT MOD n

specify alignments of I word (word alignment) or 2 words
(doubleword alignment).

.f it is determinable at compile time that the SIZE of a
record or array type or subtype is outside the range of
STANDARD.INTEGER, a diagnostic of severity WARNING is generated.
Declaration of such a type or subtype would raise NUMERIC ERROR
when elaborated.

F.6.7 Other Length Specifications

Length Specifications are described in Section 13.2 of the
Ada Language Reference Manual.

A length specification for a task type "t," of the form:

FOR t'STORAGESIZE USE n;

specifies the number of SYSTEM.STORAGE UNITS that are allocated
for the execution of each task object of type "t." This includes
the runtime stack for the task object but does not include
objects allocated at runtime by the task object. If a
t'STORAGE SIZE is not specified for a task type "t," the default
value is K (words).

A length specification for a task type "t" of the form:

FOR t'SIZE USE n;

is allowable only for n = 32.

F-22 F.6.7 Other Length Specifications

Ada/L PSE Handbook Version 3.5
29 March 1991

F.7 System-Generated Names

Pefer to Section 13.7 of the Ada Language Rpference Manual
ana tne section above on the Predetined Language Environment for
a discussion of package SYSTEM.

The system name is chosen based on the target(s) supported,
but it cannot be changed. in the case of Ada/L, the system name
is ANUYK43.

F.8 Address Clauses

Refer to Section 13.5 of the Ada Language Reference Manual
for a description of address clauses. All rules and restrictions
described there apply. In addition, the following restrictions
apply.

An address clause may designate a single task entry. Such an
address clause is allowed only within a task specification
compiled with the EXECUTIVE compiler option. The meaningful
values of the simple expression are the allowable interrupt entry
addresses as defined in Table F-1. The use of other values will
result in the raising of a PROGRAM-ERROR exception upon creation
of the task.

If more than one task entry is equated to the same interrupt
entry address, the most recently executed interrupt entry
registration permanently overrides any previous registrations.

At most one address clause is allowed for a single task
entry. Specification of more than one interrupt address for a
task entry is erroneous.

Address clauses for objects and code other than task entries
are allowed by the Ada/L target, but they have no effect beyond
changing the value returned by the 'ADDRESS attribute call.

F.8 Address Clauses F-23

Version 3.5 Ada/L PSE HandbcoK
29 March 1991

4.------------------------n~jr ---

AN/UYK-43(V) ILnterrupt Summary

:,sc InteL rupt
Target-commuter :nterruot CODE Entry Address Registration

CLASS 0

Class I tnhandled Interrupt None 1640800*
+---

CLASS I

Class 11 Unhandled interrupt None 16*1800*
CP-Operand Memory Resume 16*0# 16#1000*
CP-IOC Command Resume 1A6414 16*1100*
CP-Instruction Memory Resume 16*2* 16#1200#
CP-IOC interrupt Code Resume 16*3# 16*1300#
CP-Operand Memory Error 16#4# 16*1400*
CP-Instruction Memory Error 16*5* 16*1500*
CP-iOC Command/operand Error 16464 16416004
IOC Memory Error 1647* 16*1700*
121 Fault 16494 16#1900#
ICC Memory Resume 'L6*A* 16*lAOO*
:ntercomputer Timeout 164* 16*12004
C? Confidence Test Fault 16#C# 16*1COO*
CPU/ICC Microprocessor Stop 16*D* 16*1DOO*
Module Interruct 16#E* 16#1:Z00*
Power Tolerance 16#F# 16#1FOO*

.---
CLASS 11

4---
Class III rnhandled Interrupt None 16#2800*
Interprocessor Interrupt 16*0# 16#2000* UNDEFINABLE
Floating Point Error 16#1# 16#2100# UNDEFINABLE
Illegal Instruction 16#2# 16*2200*
Privileged Instruction Error 16*3* 16#2300*
Data Pattern Breakpoint 16*4* 16#2400*
Operand Address Breakpoint 16#5# 16#2500#
Operand Read or

Indirect Addressing 16*6# 16#2600*
DCU Status Interrupt 16*7* 16*2700#
Operand Write 16*9* 16*2900*
Operand "imi 16*A# 16#2A00*
instruction Address Breakpoint 16*B* 16*2B00*
RPD Underflow 16#C# 16*2C00*
instruction Execute 16*D# 16*2D00*
instruction Limit 16#E# 16#2E00#
Monitor Clock 16#F# 16#2F00* UNDEFINABLE
PT: None 16*2F01* . 16*2F1F*

Table F-la - Interrupt Entry Addresses

F- 24 F.8 Addr-ess Clauses

Ada/L PSE Handbook Version 3.5
23 March 1991

- - -- -- -- - -- - - - - - - - - - - -- - - - - - - - - - -------

AN/UYK-43(V) Interrupt Summary

ISC Interrupt
Target-Computer interrupt CODE Entry Address Registrat.on

CLASS I

OC Illegal CAR Instruction 1640# 16*3010#
:OC Memory Protection 16#1# 16#31:C#

1f' the above interrupt is generated during CAR execution, no
channel number is available. The interrupt will be
translated to Class IT Unhandled.

UNDEFINED 16#2# 16#3200# UNDEFINABLE
Channel Function Error 16#3# i6#33!C#
IOC Illegal Chain Instruction 16#4#.. 16#341C#

16#7#
IOC Confidence Test Fault 16#8# 16#381C#

If the above interrupt is generated during CAR execution, no
channel number is available. The interrupt will be
translated to Class 1i Unhandled.

IOC Breakpoint Match 16#9# 16#391C#

If the above interrupt is generated during CAR execution, no
channel number is available. The interrupt will be
translated to Class II Unhandled.

:OC Monitor Clock 16#A# 16#3AI0# UNDEFINABLE
IOC Processor Interrupt 16#B# 16#3BIC#
External Interrupt Monitor 16#C# 16#3CIC#
External Function Monitor 16#D# 16#3DIC#
Output Data Monitor 16#E# 16#3EIC#
Input Data Monitor 16#F# 16#3FIC#

For class III interrupts, the following interpretations apply:

IC => IOC, channel i umber where
16#00#..16#iF# indicates IOC 0, channel 16#00..16#1F#,
16#20#..16#3F# indicates IOC 1, channel 16#00..16#lF#

Table F-lb - Interrupt Entry Addresses (Continued)

F.8 Address Clauses F-25

Version 3.5 Ada/L PSE HandboaC
29 March 1991

F.9 Unchecke§& onversions

Refer to Section 13.10.2 of the Ada Language Reference Manual
:WL a desclition Af GCHLCX£W CliViRs. it is erroneous if
your Ada program performs UNCHECKED CONVERSION when the source
and target objects nave different shzes.

F.10 Restrictions on the Main Subprogram

Refer to Section 10.1 (8) of the Ada Language Reference
Manual for a description of the main subprogram. Tha sut;p:gram
designated as the main subprogram cannot have parameters. The
designation as the main subprogram of a subprogram whose
specification contains a formal_part results in a diagnostic of
severity ERROR at link time.

The main subprogram can be a function, but the return value
will not be available upon completion of the main sibprogram's
execution. The main subprogram may not be an import unit.

F-26 F.10 Restrictions on the Maia Subprogram

Ada/L PSE Handbook Version 3.5
29 March 1991

F.11 InputLQ/Output

Refer to Section 14 of the Ada Language Reference Manual for
a dicussion o Ada npu-/Output and to Sectlcn 12 of tne Ada/L
Run Time Environment Handbook for more specifics on the Ada/L
InputiOutput subsystem.

The Ada/L Input/Output subsystem provides the following
packages: TEXT 0, SEQUENTIAL 10, DIRECT_ O, and LOW LEVEL 1O.
These packages execute in the context of the user-written Ada
program tasK making the :/O reaue t. Consequently, all of the
code that processes an I/O request on behalf of the user-written
Ada program executes sequentially. The package 1OEXCEPTIONS
defines all of :ne exceptions needed by the packages
SEQUENTIAL_10, DIRECT_10, and TEXT 10. The specification of this
package is given in Section 14.5 of the Ada Language Reference
Manual. This package is visible to all of the constituent
packages of the Ada/L I/O subsystem so that appropriata exception
handlers can be inserted.

/O in Ada/L 1 nerformed solely on external files. No
a-lowance is provided in thc I/0 subsystem for memory resident
files (i.e., files which do not reside on a peripheral device).
This is true even in the case of temporary fies. Wi!:h the
external files residing on the peripheral devices, Aca/L make:
the further restriction on the number of files that may be onen
on an individual peripheral device.

Section 14.1 of the Ada Language Reference Manual states that
all I/O operations are expressed as operations on objects of some
file type, rather than in terms of an external file. File
objects are implemented in Ada/L as access objects which point to
a data structure called the File Control Block. This File
Control Block is defined internally to each of the high-level i/O
packages; its purpose is to represent an external file. The File
Control Block contains all of the I/O-specific information abcut
an external file needed by the high-level 1/0 packages to
accomplish requested I/O operations.

F.11.1 Naming External Files

The naming conventions for external files in Ada/L are of
particular importance to you. All of the system-dependent
information needed by the I/O subsystem about an external file is
contained in the file name. External files may be named using
one of three file naming conventions: standard, temporary, and
user-derived.

F.11.1 Naming External Files F-27

Version 3.5 Ada/i PSE Hadbcc<
29 March 1991

F.1l.l.1 Stadrd File Names

The standard external file naming convention used in Ada/L
identifies the specific location of the external file in terms cf
the physical device on which it is stored. For this reason, you
should be aware of the configuration of the peripheral devices on
the AN/UYK-43 at your particular site.

Standard file names consist of a six character prefix and a
file name of up to twenty characters. The six character orefix
has a predefined format. The first and second characters must be
either "DK," "MT," or "TT," designating an AN/UYH-3(V)
Recorder/Reproducer Set Magnetic Disk, the RD-358 Magnetic Tape
Subsystem, or the AN/USQ-69 Data Terminal Set, respectively.

The third and fourth characters specify the channel on which
the peripheral device is connected. Since there are sixty-four
channels on the AN/UYK-43, the values for the third and fourth
positions must lie in the range "00" to "63."

The range of values for the fifth position in the prefix (the
unit number) depends upon the device specified by the characters
in the first and second positions of the external file name. -f
the specified peripheral device is the AN/UYH-3 magnetic disk
drive, tne character in the fifth position must be one of th4
charact-ers "0," "1," "2," or "3." This value determines which of
the four disk units available on the AN/UYH-3 is to be accessed.
If the specified peripheral device is the RD-358 magnetic tape
drive, the character in the fifth position must be one of the
characters "0," "1," "2," or "3." This value determines which of
the four tape units available on the RD-358 is to be accessed.
If the specified peripheral device is the AN/USQ-69 militarized
display terminal, the character in the fifth position depends on
the channel type. If the channel type is parallel then this
character must be a "0." This is the only allowable value for
the unit number when the AN/USQ-69 is connected to a parallel I/O
channel. This is because the AN/tJSQ-69 may have only one unit on
a parallel channel. If the channel type is serial then the
character in the fifth position must be one of the characters
"10 ," " ," " ' "3 ,1# "4, " "5," "6," 117," or "S" (the character "8"
will be used to specify a broadcast mode transmission). The
AN/USQ-69 allows up to eight terminals to be daisy chained
together when running on a serial channel.

The colon (":") is the only character allowed in the sixth
position. If any character other than the colon is in this
position, the file name will be considered non-standard and the
file will reside on the default device defined during the
elaboration of CCNFIGURE 10.

Positions seven through twenty-six are optional to your Ada
program and may be used as desired. These positions may contain
any printable character you choose in order to make the file name

F-28 F.ll.l.l Standard File Names

AdaiL PSE HandbocK Versi:n 2..
29 March !391

more intj.ligible. Embedded blanks, however, are not allowed.

Te location of an external file on a peripheral device is
:Ass a function of the first six characters of the file name
regardless of the characters that might follow. For example, If
tne external file "MT000:Old Data" has been created and not
subsequently closed, an attempt to create the external file
"MT0OO:New Data" w.ll cause the exception DEVICE ERROR (rat: r
than NAME ERROR or USE ERROR) to be raised because the peripheral
device on channel "00" and cartridge "0" is already in use.

You are advised that any file name beginning with "xxxxx:"
(where x denotes any printable character) is assumed to be a
standard external file name. If this external file name does not
conform to the Ada/L standard file naming conventions, the
exception NAMEERROR will be raised.

F.11.1.2 Temporary File Names

Section 14.2.1 of the Ada Language Reference Manual defines a
temporary filp to be an external file that is not accessible
after completion of the main subprogram. If the null string is
supplied for tne external file name, the external file is
considered temporary. In this case, the high level I/O packages
internally create an external file name to be used by the lower
level I/O packages. The internal naming scheme used by the 1/O
subsystem is a function of the type of file to be created (tax:,
direct or sequential) and the current date and time. This scheme
is consistent with the requirement specified in the Ada Language
Reference Manual that all external file names be unique.

The first two characters of the file name are "TX," "D_," or
"S ." The next eiqht characters are the date (four characters
for the year, two characters for the month, and two characters
for the day). The remaining ten characters are the time (five
for seconds and five for the fraction part of a second). For
instance, the temporary external file name "D 198803311234598765'
would be a DIRECT_10 file created March 31, 1988 at 12,345.98765
seconds.

F.11.1.3 User-Derived File Names

A random string containing a sequence of characters of length
one to twenty may also be used to name an external file.
External files with names of this nature are considered to be
permanent external files. You are cautioned from using names
which conform to the scheme used by the I/O subsystem to name
temporary external files (see list item "b").

It is not possible to associate two or more internal files
with the same external file. The exception USEERROR will be

F.l.l.3 User-Derived File Names F-29

Version 3.5 Ada/! PSE HandbcoK

29 March 1991

raised if :h -.-. restriction is violated.

F.11.2 The FORM Specification for External Files

Section 14.2.L c:he Ada Language Reference Manual defines a
string argument called the FORM, wnich supplies sys:em-dependent
information that is sometimes required to correctly process a
request to create or open a file. :n Ada/L, the string argument
supplied to tne FORM parameter on calls to CREATE and OPEN is
retained while the file is open, so that calls to the function
FORM can return :ne string to your Ada program. FORM options
specified on calls to CREATE have the effects stated below. FCRM
options specified on calls to OPEN have no effect.

Ada/L only allows a FORM parameter when a file is open or
created on the RD-358 tape drive. A USE ERROR will be raised
when a FORM parameter is associated with any other Ada/L system
device. The FORM parameter specifically controls the positioning
and formatting of the tape prior to tape 1!0 operations. This
section identifies the arguments of the FORM parameter. Refer to
Section 14.2.1 of the Ada Language Reference Manual and :D
Section 12 of the Ada/L Run-Time Environment Handbook for more
detail on the use of tne FORM parameter.

The FORM parameter is a string literal of which a maximum of
twenty characters is processed. If the supplied FORM string is
longer than tne maximum allowed (20 characters), the exception
USE ERROR will be raised. The striag literal is interpreted as a
sequence of arguments. if you wish to utilize the default
arguments, a FORM parameter need not be supplied.

Only the first two arguments within the string are processed.
All following characters or arguments will cause the USE ERROR to
be raised. The arguments are not case sensitive. The arguments
must be separated by at least one delimiter. A legal delimiter
ccnsists of a comma or blank. Extra delimiters are ignored. Of
the recognized arguments, at most one formatting and one
positioning argument are allowed. If conflicting arguments are
used, the exception USEERROR will be raised.

Positioning arguments allow control of tape before its use.
The following positioning arguments are available:

a. RZW:ND - specifies that a rewind will be performed prior to
the requested operation.

o. NOREWIND - specifies that the tape remains positioned as is.

c. APPEND - specifies that the tape be positioned at the logical
end of tape (IEOT) prior to the requested operation. The
LEOT is denoted by two consecutive tape_marks.

F-30 F.1l.2 The FORM Specification for External Files

Ada/! PSE HandbooK "ension 3.3
29 Marcn 1991

The Q matting argument specifies information about tape
mat. If a formatting argument is not supplied, the fi~e is

a sumed to contain a format header record determined by the AS,'N
:,o system. The following formatting arguments are available:

a. NCHEAD - specifies that the designated file has no header
record. This argument allows the reading and writing of
tapes used on computer systems using different header
formats.

b. DENSITY 800 - specifies that the tape is written/read with a
density of 800 BPI. This is the default density. Attemotinc
to write/read files of different density on the same tape
will cause unpredictable results.

C. DENSITY 1600 - specifies that the tape is written/read wi-n a
density of 1600 BPI. Attempting to write/read files of
different density on the same tape will cause unpredictable
results.

F.11.3 File Processing

Processing allowed on Ada/L files is influenced by the
characteristics of the underlying device. The following
restrictions apply:

a. Only one file may be open on an individual RD-358 tape drive
at a time.

b. ThE attempt to CREATE a file with the mode IN FILE is not
supported since there will be no data in the file to read.

F.11.3 File Processing F-31

Version 3.5 Ada/L PSE HandboOK
29 March 1991

F.1I.4 Text - put/Output

TEXT -O is invoked by your Ada program to perform sequential
access :/O operations on text files (i.e., files whose content is
in numan-readable form). TEXT O is not a generic package and,
thus, its subprograms may be i0voked directly from your program,
using objects witn base type or yarent type in the
language-defined type character. TEXT 10 also provides the
generic packages INTEGER _0, FLOAT_1O, FIXED _0, and
ENUMERATION _0 for the reading and writing of numeric values and
enumeration values. The generic packages within TEXT :O require
an instantiation for a given element type before any f their
subprograms are invoked. The specification of this package is
given in Section 14.3.10 of the Ada Language Reference Manual.

The implementation-defined type COUNT that appears in Secticn
14.3.10 of the Ada Language Reference Manual is defined as
follows:

type COUNT is range 0... INTEGER'LAST;

The implementation-defined subtype FIELD that appears in Section
14.3.10 of the Ada Language Reference Manual is defined as
follows:

subtype FIELD is INTEGER range 0... !NTEGER'LAST;

At the beginning of program execution, the STANDARD INPUT
file and the STANDARD OUTPUT file are open, and associated with
the files specified by you at export time. Additionally, if a
program terminates before an open file is closed (except for
STANDARD INPUT and STANDARDOUTPUT), the last line you added to
the file may be lost; if the file is on magnetic tape, the file
structure on the tape may be inconsistent.

A program is erroneous if concurrently executing tasks
attempt to perform overlapping GET and/or PUT operations on the
same terminal. The semantics of text layout as specified in the
Ada Language Reference Manual, Section 14.3.2, (especially the
concepts of current column number and current line) cannot be
guaranteed when GET operations are interweaved with PUT
operations. A program which relies on the semantics of text
layout under those circumstances is erroneous.

For TEXT_1O processing, the line length can be no longer than
1022 characters. An attempt to set the line length through
SET -LINE LENGTH to a length greater than 1022 will result in
USE-ERROR.

F-32 F.11.4 Text Input/Output

Ada,,L PSE Handbook Version 3.5
29 March 1991

F.11.5 Sequiential Input/Output

SEQUENTIAL -O is invoked by your Ada program to perform I/0
on the records of a file in sequential order. The SEQUENTIAL :O
package also requires a generic instantiation for a given element
type before any of its subprograms may be invoked. Once the
package SEQUENTIAL I is made visible, it will perform any
service defined by the subprograms declared in its specification.
The specification of this package is given in Section 14.2.3 :f
the Ada Language Reference Manual.

The following restrictions are imposed on the use of the
package SEQUENTIALO:

a. SEQUENTIAL 10 cannot be instantiated with an unconstrained
array type.

b. SEQUENTIAL_IO cannot be instantiated with a record type w,:.i
discriminants with no default values.

c. Ada/L does not raise DATA ERROR on a read operation if tne
data input from the external file is not of the instantiating
type (see the Ada Language Reference Manual, Section 14.2.2).

F.11.6 Direct Input/Output

DIRECT 10 is invoked by your Ada program to perform I/O of
the records of a file in an arbitrary order. The package
DIRECT 10 requires a generic instantiation for a given element
type before any of its subprograms may be invoked. Once the
package DIRECT 10 is made visible, it will perform any service
defined by the-subprograms declared in its specification. The
specification of this package is given in Section 14.2.5 of the
Ada Language Reference Manual.

The following restrictions are imposed on the use of the
package DIRECT_10:

a. DIRECT 10 cannot be instantiated with an unconstrained array
type.

b. DIRECT 10 cannot be instantiated with a record type with
discriminants with no default values.

c. Ada/L does not raise DATA ERROR on a read operation if the
data input from the external file is not of the instantiating
type (see the Ada Language Reference Manual, Section 14.2.4).

F.11.6 Direct Input/Output F-33

Versicn 3.5 Ada/L PSE HandbcoK
29 March 1991

F.11.7 Low Level Input/Output

!OW LEVEL 10 is invoked by your Ada program to initiate
pnysical operations on peripheral devices, and thus executes as
oar: of a program task. Requests made to LOW LEVEL -O from your
program are passed through the RTEXEC GATEWAY to the channel
programs in CHANNEL :O. Any status check or result information
Ls the responsibility of the invoking subprogram and can be
obtained from the subprogram RECEIVE CONTROL within LOW LEVEL i0.

The package LOW LEVEL iO allows your Ada program to send :i0
commands to the I/O devices (using SEND CONTROL) and to receive
status information from the I/O devices (using RECEIVE CONTROL).
A program is erroneous if it uses LOW LEVEL 10 to access a device
that is also accessed by high-level 170 packages such as
SEQUENTIAL 10 and TEXT :0. The following is excerpted from the
pacKage LOW LEVEL 10.

SUBTYPE channel range IS INTEGER RANGE 0..63;
-- Range of values allowed for channel number.

SUBTYPE device str 1S STRING;
-- To be passed to CHANNEL 10 for future implementations
-- of logical path name. fhe string will be ignored un:!L
-- logical path name support is added.

SUBTYPE btc int IS INTEGER RANGE 0..16383;
-- Passes transfer counts to/from 10_MANAGEMENT/RTEXEC.

SUBTYPE io functions IS INTEGER RANGE 0..20;
-- Specifies the I/O function to be performed by LOW LEVEL 10.
-- The followinq table shows the values associated with device
-- and device functions available.

F-34 F.ll.7 Low Level input/Output

Ada/L PSE Handbook Version 3.3
29 March !99i

-- VALUE -- - DEVICE -- FUNCTION

-- 0 RD-358 Normal Read
-- i RD-358 Read with Search data
-- 2 RD-358 Normal Write
-- 3 RD-358 Send EF Command
-- 4 RD-358 initialize Channel

-- 0 UYH-3 Read with 2 word EF
-- i UYH-3 Read with 1 word EF
-- 2 UYH-3 Write
-- 3 UYH-3 Send I word EF Command
-- 4 UYH-3 Send 2 word EF Command
-- 5 UYH-3 Send I word EF Command (Same as function 3)
-- 6 UYH-3 Initialize Channel

-- 0 USQ-69 Real
i USQ-69 Write

-- 2 USQ-69 Write (Same as function)
-- 3 USQ-69 Send Command
-- 4 USQ-69 Initialize Channel

TYPE capblock IS
-- Information that can be found in IOC control memory on
-- a per channel/ per function basis.
RECORD

cap : INTEGER; -- CAP register.
instruct-base : INTEGER; -- CAP instruction base.
index : INTEGER; -- CAP index register.
accumulator : INTEGER; -- CAP accumulator register.
status : INTEGER; -- CAP status register.
buffer base : INTEGER; -- CAP buffer base.
bcw : INTEGER; -- CAP buffer control word.
operandbase : INTEGER; -- CAP operand base.

END RECORD;

TYPE short rec control block IS
-- I/O control block sent to LOW LEVEL 10 as a parameter
-- when calling subprogram RECEIVEREQUEST.
RECORD

channel low level io.channelrange;
-- Specifies channel-of interest.

ei word : INTEGER;
-- External interrupt returned by the peripheral device.

END RECORD;

F.II.7 Low Level Input/Output F-35

Version 3.5 Ada/L PSE Handbook
29 March 1991

TYPE receive-sentrol block IS
-- I/O control block sent to LOW LEVEL IO as a parameter
-- when calling subprogram RECEIVEREQUEST.
RECORD

data low level io.short rec control-block;
-- Channef and eiword. -

ef : lowlevel io.capblock;
-- External Function CAP information.

output : low level io.cap_block;
-- Output CAP information.

ei : low level io.capblock;
-- External Interrupt CAP information.

input : low level io.cap_block;
-- Input CAP information.

END RECORD;

TYPE send control block IS
-- I/O control block sent to LOW LEVEL 10 as a parameter
-- when calling subprogram SEND_REQUEST.
RECORD

function_pos low level io.io functions;
-- Indicates which I/O function is to be requested
-- of LOWLEVEL 10.

channel : low level io.channel_range;
-- Specifies channel number.

transfer count : low level io.btc int;
-- 3uFfer transfer count for 170 operation.

buffer addr : system.address;
-- Address of data buffer.

command I INTEGER;
-- Holds the first word of the external
-- function for the device.

command 2 : INTEGER;
-- Holds the second word of the external
-- function for the device.

filler I : INTEGER;
-- Passes additional information to
-- CHANNEL 10 (such as the terminal-address
-- for the-USQ-69 device).

END RECORD;

F-36 F.ll.7 Low Level Input/Output

Ada/L PSE Handbook 7ersion 3.3
29 March 1991

PROCEDURZ SEND CONTROL
-- Passes I/O control information to a procedure in
-- IOMANAGEMENT/RTEXEC in order to send data to the
-- specified device.

(device : :N low level io.device str
-- This string will be ignored until
-- logical path names are implemented.

data : IN low level io.send control block
-- I/O control block for send request.

PROCEDURE RECEIVE CONTROL
-- Passes I/O control information to a procedure in
-- IO MANAGEMENT/RTEXEC in order to obtain tne status of
-- the I/O operation.

(device : IN low level io.devicestr ...;
-- This string will be ignored until
-- 1ogical path namcs are implemented.

data : IN OUT low level io.receive control-block
-- I/O control block for receive request.

PROCEDURE RECEIVE CONTROL
-- Passes I/O control information to a procedure in
-- IOMANAGEMENT/RTEXEC in order to obtain the status of
-- the I/O operation.

(device : IN low level io.device str
-- This string wfll be ignored until
-- logical path names are implemented.

data : IN OUT low level io.short rec control block
-- I/O conErol block for Fecerve request.

F.12 System Defined Exceptions

In addition to the exceptions defined in the Ada Language
Reference Manual, this implementation pre-defines the exceptions
shown in Table F-2 below.

F.12 System Defined Exceptions F-37

Version 3.5 Ada/L PSE Handbook
29 March 1991

Name Significance

CAPAC:TY ERROR Raised by the Run-Time Executive when
Pre-Runtime specified resource nmts
are exceeded.

PASTPTITIME Raised by the PTI support package if
the PTI start time is greater tnan the
current CALENDAR.CLOCK.

SYSTEMERROR Serious error detected in underlying
AN/UYK-43 operating system.

UNREGISTERED PTI Raised by the PTI support package if
the PTI's state is returned as
"unregistered".

UNRESOLVEDREFERENCE Attempted call to a subprogram whose
body is not linked into the executable
program image.

--

Table F-2 - System Defined Exceptions

F-38 F.12 System Defined Exceptions

Ada/L PSE Handbook Version 3.5
29 March 199.

F.13 Matihne Code Insertions

The Ada language permits machine code insertions as defined
in Section 13.8 of the Ada Language Reference Manual. This
section describes the specific decails for writing machine code
insertions as provided by the predefined package MACHINECODE.

You may, if desired, include AN/UYK-43 instructions within an
Ada program. This is done by including a procedure in the
program which contains only record aggregates defining machine
instructions. The package MACHINECODE, included in the system
program library, contains type, record, and constant declarations
which are used to form the instructions. Each field of the
aggregate contains a field of the resulting machine instructi:n.
These fields are specified in the order in which they appear in
the actual instruction. Since the AN/UYK-43 has several
different formats for instructions, package MACHINE CODE defines
different types for each of these formats. For each of the
fields which must have a certain value for a given instruction
(i.e., part of the opcode), package MACHINECODE defines a
constant to use for that f'.eld.

The following procedure implements a floating point
exponential. Note that this actual procedure would not be used,
because package MATHPACK implements the same operation in a more
efficient manner.

with machine code; use machine-code;
procedure floatingpoint_exponential

(x : FLOAT;
ex : OUT FLOAT) is

BEGIN
formatI'(f-LA,l,3,6,0,0,0);

-- LA A1,B6+0

formatV'(f FEX,l,f2 FEX,2,0,0,0,f6_FEX);
-- FEX A1,A2-

formatI'(f=>f SA,a=>2,k=>3,b=>6,i=>O,s=>O,y=>l);
-- SA A2,B6+I

END;

Note that either positional or names aggregates may be used.
Whenever a field does not appear in the MACRO/L instruction, it
must be filled in with 0, since no missing fields are allowed.
For formatl instructions, when k=0, the s and y field are
collapsed and used together. For your convenience, an additional
record type, formatli, for immediate 7 can be used to define the s
and y fields as a single 16-bit quantity. This quantity is
defined as an unsigned integer, so if a negative number x is
desired, one should instead put the number x + 65535.

F.13 Machine Code Insertions F-39

Version 3.5 Ada/L PSE Handbcok
29 March 1991

Table F-3jontains a list of MACRO/L instructions and their
AdaL machine code equivalents, sorted by MACRO/L mnemonic.

F-40 F.13 Machine Code Insertions

Ada/L PSE Handbookc Verslcn 3.3
29 Marc.i 1397-

--------------------------------------im---

MACRO/L Ada/L
-- --

AA a,y,k,b,s forrnatI'(t AA,a,k,b,i,s,y);
A3 a,y,k,b,s forratI'(AB,a,k,b,i,s,y);
AE: asy,b frmatUi'(71AEI,a,kAEI,b,i,sy);
ALP a,y, , s Eorrnatl'(f ALP,a,kALP,b,i;,s,y);
ANA a,y,kb,s formatl'(f ANA,a,k,b,i,s,,y);
ANB a,y,k,b~s forratI(fANB,a,k,b,i's,y);
ATSF a,b formatV'(f ATSF,a,f2_ATSF,b,0,0,0,f6 ATSF);
BC akly,b,s formaa~a'(-fBC,a,k,b,i,s,,Y);
BS ak,y,b,s forratIa'(f-BS,a,k,b,i's,y);
3Z aic,yobs forrnatla'(f BZ,a,k,b,ifs'y);
C aly,k,b,s forrnatl'(f Cf,a,k,b,i,s,y);
CB forynatlVA'(fCB,aCB,O,i CB)
CBN a~n foriatlVCI~f CBN,a,f4_CBN,n);
CBR a,b forrnatV'(f CBR~a,f2_CffR,b,O,O,0,f6_CBR)
CC: a,b forratVA'TfCCT,a,b',iCCT);
CT formatIVA'(ffCE,aCE,O~i CE)
CG a,y,k,b,s forrnatI'(f CG ,a,k,b,i,s,y);
c:-ICL a,,y,b,s ',orrnat'(f-CHCL,a,kCHCL,b,iCHCL,s,y);

CM a,y,klb,s forratI'(f-CM,a,k,b,i's'y);
C-MPS a,b forratV'(f CMPS,a,f2_CMPS,b,0,0,0,f6_CMPS
CNT aly,b,s forratl'(f CNT,a,kCNT,bt.i,ssy);
CR9 a,b fformatV(f CRB,a,f2_CRB,b,O,O,O,fGCRS)
CX1 a,y,k,b,s formatl'(f CXI,a,k,b,i~S,y);
D a,y,k,b,s formatl'(f D,a,k,b,i,s,y);
DA aly,b,s formatI'(f DA,a,kDA,b,i~s,y);
DAN ayb,s forratI'(f-DAN,a,kDAN,b,i,s,y);
DC aly,b,s formatl'(fDC,a,kDC,b,i,s,y);
DjNZ a,y,k,b,s formatlll'(f DJNZ,a,f3_DJNZ,k,b,.i's,y);
DJZ a-~~~ omtl'fDJZ,a,f3_DJZ,k,b,i,s,y);
DL a,y,b,s formatl'(f DL,a,kD L,b,i,s,y);
DS a,,b,s formatl'(E-DS,a,k DS,b,i,s,y);
DSP alb,m formatV'(fDOSP,ajf2DSPfb,O,O,m,f6_DSP)
EECM formatIVA'(fEECM,aEECM,O,i EECM T;
ESCM formatlVA'(fESCM,aESCM,Ofi-ESCM)
ETCM formatIVA'(fETCM,aETCM,O,i ETCM)
FA a,Yb,s formatl'(f FA,a,k FA,b,i,s~y);
FAC a,b formatV'(f-FAC,a,!f2 FAC,b,O,0,O,f6_FAC)
FAN aly,b,s formatl'(f-FAN,a,kfANpb.i's~y);
FANR a,y,b,s formatl6'(f FANR,a,kFANR,b,ifs,y);
FAR a,y,b,s formatli(f FAR,a,kF AR,b,i,s,y);
FAS a,b formatV'(f FAS,a,f2_FAS,b,O,O,O,f6 FAS)
-AT a,b formatV'(f FAT,a,f2_FAT,b,0,O,0,f6_FAT)
FO aly,b,s for.,natI(fEFD,a,kFD,b,ifs,y);
FOR a,y,b,s formatI'(f-FDR,a,k_ FDR,b,i,s,y);

- --------------------------------- ------- --------------------------

Table F-3a - Machine Code Trstrictions

F.13 Machine Code insertions F-41

Version 3.5 Ada/L PSE Handbooc
29 March 1991

4.-------------------------------------- ---

MACRO/L Ada/LI
4---

FEX a,b foratV'(f _FEX,a,f2_FEX,b,O,O,O,E6_FEX)
FLN a,b format-V'(fFLrN,a,f2 F7LN,b,O,O,O,f6_FLN)
F L" a,a fformatV (f ;:LTF,a,-F2 FLTLF,n,0,O,0,7.6_Fr=')
FM a,y,b,s formatI'(f_'FM,a,k FM,b,i,s,y);
FM.R a,y,b,S forrnatl'(f _FMR,a,.k FM1R,b,i.,s,y);
F-PA a,b fformatV'(fFPA,a,f2_FPA,b,Q,0,O,f6 FPA);
FPD a,b fornia' V'(f FPD,a, f2_FmPD,b,O,O,O,f6 FPD);
FPM a,b formatV'(fFPM,a,f2 FPM,b,0,0,O,fi6 FPM)
FPS a.,b forratVW(fFPS,a,f2 'PS,b,0,Q,O,f6 FPS)
FSA a.,b forratV'(fFSA,a,f2_FSA,b,O,O,O,-F6_-SA);
FSC a,b EarmatV'(A'_FSC,a,f2_F"SC~b,0,0,0,f6 FSC)
FSD a,b forrnatV'(fFSD,a,ff2 FSD,b,O,O,O,ic6 FSD);

FS ab rratV'(_f-SM,a~f2-FSM,b,0,O,O,f6-FSM)
FSS a,b EormatV'(f_-FSS,a,f2 FSS,b,O,O,Q,f6_FSS);
E'TSL a,b formatV'(f -FTSL,a,ig2_FTSL,b,0,0,0,-76_FTSL);
HA a,b forrnatIVA'(f '_HA,a,b,O);
HAEI a,b forratlVA'(fHAEI,a,b,i HAEI)
HAI fzrnatVA'(fAI,O,O,O);
HALT Ao r ma t IVA' (f _HALT,0,0,iHALT)
HAN a,b formatIVA'(f HAN,a,b,O);
HAND a,b fortatIVA'Cf FAND,a,b,i HAND)
HC a,b forratIVA'(fHC,a,b,O);
HCB a,b formaIVA'(fCB,a,b,O);
HCL" a,b formatIVA'(ffiCL,a,b,O);
HCM a,b fforratVA'(fHCM,a,b,O);
HCP a formratVA'(fEHCP,a,O,O);
HCRC a,b formatIVA'(f _RCRC,a,b,iHCRC)
HD a,b formatIVA'(fRD,a,b,O);
HDCP a formatlVA'(fHDCP,a,O,O);
HDLC a,m formatlVB'(f_-iDLC,a,zn);
HDRS a,m formatIVB'(fHDRS,a,n);
HDRZ a,m formatlV'B'(fHDRZ,a,m);
HDSF a,b formatIVA'(fHDSF,a,b,O);
HLB a,b formatIVA'(fHLB,a,b,O);
HLC a,m formatIVB'(f tLC,a,m);
HLCA a,b formatIVA'(f HLCA,a,b,i_HLCA)
ELCI af4,b formatIVA_1'Tf HLCI,af4,b,i HLCI);
HLCT af4,b formatIVA 1'(f HLCT,af4,b,i ELCT);
HLTC a,b formatIVA'(f_-HLTC,a,b,i_HLTff)
RM a,b format1VA'(f-i{M,a,b,O);
HOR a,b formatIVA'(fHOR,a,b,O);
HPEI a,b formatIVA'(fHPE'I,a,b,iHPEI)
HP formatIVA'(fHPI,0,O,O);-
HR a,b formatV'(f HR,a,f2 _HR,b,O,O,O,f6_HR);
HRS a,rn formatIVB'TfHRS,am);

------------------------------ -------------------------------+

Table F-3b - Machine Code Instructions (Continued)

F-42 F.13 Machine Code- Insertions

Ada/L PSE Handbook Version 3.5
29 March 1991

-------------------------------------- wn---

MACROIL Ada/L
4-- ---

ERT a,b formatIVA'(fHRT,a,b,O);
HRZ a,m formatIVB'(fHRZ,a,m);
HSCA a,b forrnatIVA'(fHSCA,a,b,i HSCA)
HSCI af4.,b formatIVA 1'(f HSCI,af4,b,i HSCT);
HSCT af4,b formatIVA 1'(f HSCT,af4,b,i HSCT);
HSF a,b formatIVA(fHSF,a,b,O);
HSIM a,b forratIVA'(fHSIM,a,b,iHSIM)
HSTC a,b forzatIVA'(fHSTC,a,b,i HSTC)
HST. formatIVA'(fHSTI,aHST1f,b-iST1,i ?HST.');
HST2 formatIVA'(fHST2,aHST2,bHST2,iHST2);
HST3 formatIVA'(fHST3,aHST3,bHST3,iHST3);
HST4 furmatIVAh(ZmiS-4,aHST4 ,b HST4,iHST4);
HSTD a,b formatIVA'(fHSTD,ab,i HSTD)
HSTV a,b formatIVA'(fHSTV,a,b,i HSTV)
HV a,b formatV'(fHV,a,f2_HV,b,O,O,O,f6_HV);
HWFI formatIVA'(fHWFI,O,O,iHWFI)
HXOR a,b formatIVA'(fHXOR,a,b,O);
IBSC a formatIVA'(fIBSC,a,O,iIBSC)
:ILM a FormatIVA'(fIILM,a,O,i4 ULM)
10 aly,b,s formatI'(f 1O,a,kiQ,b,i,,,y);
IOCL a formatIVA'Tf IOCL,a,O,iIOCL)
I0CR a fformatIVA 6(f_-IOCR,a,O,i 10.CR)
IOCS a formatIVA'(f IOCS,a,Oi IOCS)
IOT a,b,m formatV'(f IOT,a,f2_IOT,b,O,O,m,f6_tOT)
IPI y,b,s formatl'(f IPI,aIPI,k _IPI,b,i,s,y);
IR formatI'(feIR,O,kW-tR,O,O0,Q,Q);
IRMMS a,b formatIVA'(fIRMMS,a,b,iIRMMS);
IRMSR a,b formatIVA'(fIRMSR,a,b,iIRMSR)
1SMSR a,b fcmtV'f SS~~~ ISMSR)
ISP alb,m formatVi(f ISP,a,f2 ISP,b,O,O,m,f6_ISP)
J Y'k,b,s formatItt'TfJ,aJT3_J,k.,b,i,s,y);
JBNZ a,y,k,b,s formatIII'(fEJBN,a,f3_JBNZ~k,b,,s,y);
JC al,,k,b,s formatlll'(fJC,a,f3_JCf,k,b,i,s,y);
JE y,k,b,s formatlll'(fJE,aJE,f3 JE,k,b,i,s,y);
JEP a,y,k,b,s formatIll'(fJEP,a,f3 -JiP,k,b,i,s,y);
JG Y,k,b,s formatIII'(fJG,aJG,f3 JG,k,b,i,s,y);
JGE y,k,b,s formatllt'(f -JGE,a JGE,?3_-JGE,k,b,i,s,y);
JL y,k,b,s formatIlI'(f-JL,a,E3 JL,kb,i,s,y);
JLE y,k,bos formatIIt'(fJLE,a_-JLE,f3_-JLE,k,b,i,s,y);
JLT y,k,b,s formatlll'(f JLT,a JLT,f3_JLT,k,b,i,spy);
JN aly,k,b,s formatII'(f-JN,a,?F3_JN,k-,b,i,s,y);
JNE y,k,i.F~ formatIII'(f JNE,a JNEf3JNE,k,b,i,s,y);
JNF y-~~ omallEN~ JNF,f3JNF,k,b,i,s,Y);
JNW y,k,b,s formatlll'(fJNW,aJNW,f3 JNW,k,b,i,s,y);
JNZ aly,k,b,s formatIII'(fJNZ,af3_JNZk,b,i,s,y);

- ---------------------------------- -------- -----------------------

Table F-3c - Machine Code Instructions (Continued)

F.13 Machine Code Insertions F-43

Version 3.5 Ada/L PSE Handbcok
29 March 1991

RACRO/L Ada/L
-------.--

:F y,kfb..S forratMI'(f -JOFa JOF,f3 JOF,k,bisjy);
JOP a,y,k,b,s formatIUl'(E JTOP,a,f3 JOP,k,'o,i,s,y);

TaI I 7ayrkjbfs form aI 4EP~,3 JP,k,b,i,s,y);
is sy,k,b forratLI1'(f _JS,O,ff3JS,k,b,i,s,y);
JSC a,y,k,b,s formatMTI'(f JSC,a,f3 JSC,k,b,i,s,y);

JW ykf~ ormatIMl'(f-JW,aJW,f3 _JW,k~b,i,s,y);
jz a,y,k,b,s .1orratI1I'(.EJZ,a,f3 _JZ,k,b,i,s,y);

_A a,y,k,b,s -Forrat:'(ELA,a,k,b,i,s,y);
LB a,y,k,b,s format'&'(f LB,a,k,b,i.,s,y);
Z.B3J apyrkpbrs forrat'41l(fLBJ,a,f3 rBJ,k,b,i,s,y);
3M.P a,y,b,s formatl'(f LBMP,a,kLBMP,b,i,s,y);
LCI akfy,bs fformatra'(fLC:,ak,b,i,s,y);

I LCM1 y,b,s forma t (f_- LCM1,a_-LCM1,k_-LCM1,b,i LCMl,S,y);
LCM2 y,b,s forrat' _LCM2,aLCM2,kLCM2,b,i-LCM2,s,y);
LCM3 y,b,s formatlI(fLCM3,aLCM3,kLCM3,b,i CMJ ,Y);
LCM4 y,b,s Lormatlt (fLJCM4,aLCM4,kLCM4,b,i-LCM4,s,y);
rCMA y,b,s formatl'(fLCMA,aLCMA,kLCMA,b,iLCMA,s,v);
LCMP y,b,s formatl'(fLCM4P,aLCMP,kLCMP,b,i,,y);
ILCMT y,b,s foratl'(fLCMT,aLCMT,kLCMT,b,iL.CMT,s,y);
rCPA a,y,b,s 2ormatl'(fLCPA,a~kLCAb,i,s,y);
LCRA a,y,b,s formatl'(fLCP.A,a,kLCRA,b,i,s,y);
LCT akoy,b,s formatra'(fLCT,ak,b,i,s,y);
LDLF a,y,k,b,s formati'(f L D'F,a,k,b,irsty);
-ECM forrnatIVA'(fLECM,a_ LECMS.O,iLECM)
L:BP a,y,b,s Aformatl'(f LIBP,a,kLIBP,b,i,s,y);
LIM alsy,b formatli'(fLIM,a,kLIM,b,i,sy);
L114P a,y,b,s 46ormatli(f LIMP,a,kLIMP,b,i,s,y);
LISR a,b formatIVA'(fLISR,a,b,i LISR);
LLP aily,brs formatl'(fLLP,a,kLLP,S,i,s,y);
LLPN a,y,b,s formatl'(fLLPN,a,kLLPN,b,i,s,y);
LM a,y,k,b,s formatl'(fLM,a.k,bi,s,y);
LNA aly,k,b,s formatI'(fLNA,a.k,b,i,,y);
LR.R a,m formatV'(f LRR,a,f2_LRR,O,O,O,m,f6_LRR);
LRRA a,b,i formatIVA'Tf -LRiRA,a,b,i);
LsCm formatIVA'(fELSCM,aLSCM,O,iLSCM);
LSUM a,y,k,b,s formatl'(fLSUM,a,k,b,i,s,,y);
LTCM formatIVA'(fLTCM,aLTCM,O,iLTCM)
LA'XB aly,k,b,s formatl'(f_-LXEB,a,k,b,i,spy);-
M4 a,y,k,b,s format1'(fM,a,k,b,i's,y);
M4S a~y,b,s formatI'(fM4S,a,k MStb,i,sry);
NLP alyopb,s formatI'(fNLP,a,kNLP,b,i,s,y);
CIR a,y,b,s formatl'(f OR,a,k OR,b,i,s,y);

PEI~~~~ afybfrmti(PEI,a,kPEI,b,i,sy);
PFCD formatIVA'(f PFCD,O,O,iPFCD)

PFCE 4ormattVA'(f PFCE,O,O,iPFCE)
----------------------- ---------- :----------------------

Table F-3d - Machine Code Instructions (Continued)

F- 44 F.13 Machine Code Insertions

Ada/L~ PSE Handbook Version 3.5
29 March' L99L

4.-----------------------------------

MACRO/L Ada/L
--

PFR arylbrs forrnatI'(f PFR,a,k_? FR,b,iJ PFR,s,y);
PIE orntV'fPEOOI :)
PMM yfbrs forratl'(f PMM,aPMM,k -PMMfb,i,s,y);
PMR Yfb,s fformat'(f PMR,aPMRfk PMR,b,.;,sfy);
POP a,b 14ormatV'(f-POP,a,f2 _POP;,b,O,O,O,f6 POP);
PUSH a,b forratV(f PUSH,a,f2 -PUSH,b,O,OO,fG PUSH)
RA a,y,k,b,s fformal'(f RA,a,k~b.1,s,y);
RALP a,y,D..s foratl'(f RALP,a,k_-RALP,b,i,s,y);
RAN a,.y,k,b,s formatI t (f -RAN,a,,k,b',isy);
RCCR y,b,s fomt'fRC~ CRk-RCf~f~)
RD afyf,b,s forrnatl' (f RD,a,k~b,i~sfy);
RI a,y,k,b,s format1'(fRIfa,kfb,ifsfy);
RICAS a,b EorDiatIVA'kf RIOAS,afb,i RICAS);
RISR a,b forraatIVA'(f RISR.a,b,i RISR);
RJ y,kfbfs formatI!I'(f RJ.aRJ,E3-RJ,k,b,i,s,y);
RJC a,y,k,b,s formatTLII (f RJC,a~f3 RJ7C,k,b,i,s,y);
RJSC a,y,k,b,s formatlII'(OfRJSC,a,f RJSC,k,b,;,s,y);
RLP alyb,s Eormat'I'(f RLP~a,kRLP,b,1,s,y);
RMMS a,bi format!VATf RA. 1S,a,b,i);
RMS a,y,b..s formatl'(f RMS,a,kRMS,b,ifs,y);
RMSR y,s formatl'(f RMSR,aRMfSR,kRMSR,b,i,s,y);
RNLP a,y,b,s fformatl' (f RNLP,a,kRNLP,b,is,y);
ROR aly,b,s formatl'(f ROR,a,kROR,b,i,s,y);
RP asy,b formatli'(f RP,a,kRP,b,i,sy);
RPD y,klb,s formatI'(f R PD,aRPD,k,b,i'sfy);
RRR a,rn formatV'(f RRR,a,f2RRR,,,,n,.'6 _RRR)
RSC alylb,s formatl'(fRSC,a,kRSC,b~is,y);
RSD a formatIVA'(f RSD,a,Q,iRSD);
RXOR a,y,b,s fomtI(RXEOR,a,kRXOR,b,i,s,y);
SA aly,kb.3 formatI'(f-SA,a,k,bi,s,y);
SB a,y,k,b,s formatI'(f SB~a,k,b,i,s,y);
SIBN a,n formatIVC'TfSBN,a,f4_SBN,n);
SBPC a,y,k,b,s formatl'(f SBPC,a,k,bri,s,y);
SC aly,b.s forumatI'(f-SC,a,kSC,b,i,s,y);
SCI ak,y,b,s formatIa'(Y' SCI,ak,b,i,s,y);
SCMA y,b,s formatl'(f -SCM.A,a_-SCM4A,k -SCMA,b,iSCM4A,s,y);-
SCXP y,b,s formatl'(f -SCMP,aSCMP,k-SCP,b,i,s,y);
SCMT y,b,s forzatl'(f SCMT,aSCMT,k-SCMT,b~iSCMT,s ,y);
SCM1 y,b,s formatI'(f-SCM1,aSCMI,kSCM1,b,i _SCM1,s,y);
SCM2 y,b,s formatl t (E SCM2,a SCM2,k -SCM2,b.i _ SCM2,s,y);
SCM3 y,b,s formatl'(f -SCM3,a-SCM3,kSCM3,b,iSC43,s,y);
SCM4 y,b,s formatl'(f SCM4,aSCM4,kSCM4,b,iSCM4.s,y);
SCPA a,y,b,s formatI'(f SCPA,a~kSCPAb,i,s,y);
SCRA a,y,b,s formatl'(fESCRA.a,kSCRA,bfi,sty);
SCSR y,b,s formatI'(f-SCSR,aSfSR,kSCSR,b,i,s~y);

----------------------------------- ------ :7-----------------------+

Table F-3e - Machine Code Instructions (Continued)

F.13 Machine Code Insertions F-45

Version 3.5 Ada/rL PSE HandbCCK
29 MarchI 1991

- -

MACRO / " Ada/L
- - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - - - -

SCT ak,y,b,s formatla'(fSCT,ak,b,i,s,y);
sO:F a,y,b,s formatl'(f SDIF,a,k _SDIF,b,i,s,y);
SDMC a formatlVA'(f SDMC,a,O,iSDMC);
S:sP a,y,b,s fornatl'(fSIfBP,a,kSIBP,b,i,s,y);
51.1C a,b formatlVA'(ff SIMC,a,b,i _SIMC)

SIRC a,b forratIVA'Tf -SIRC,a,b,i_SIRC)
SITC a,b fornatVA'(f SITC,a,b,'6_SIT.C)
SLP ajy,b,s forratl'(fSfP,a,kSLP,b,i,s,y);
SM alylk,b,s forrnatl'(f SM,a,k,b,i,,y);
SMCC a formatIVA'(f SMCC,a.O,i SMCC)
SMSR y,b,s forratl'(fSMSR,aSMSR,kSMSR,b,i,s,y);
SNA a,y,k,b,s formatt'(f SNA,a..kpb,i,s,y);
SRRA a,b,i formatLVA'(f_SRRA,a,b,i);
SSUM a,y,b,s formatl'(f SSUM,a,kSSUM,b,i,s,y);
STAF a,b formatV'(f SLAF,a,f2 STAE,b,O,O,0,ff.6 STAF',
STSB akc,y,b,s forratla'(FSTSB,ak,b,i,S,,y);
SXB a,y,k,bfs formratl(fS ak J~~..)
TSN a,.n forrnatlVC (fTSN,a,f4 TBN,n);
TR a,b formatV'(f TR ,a,f2_TR,b,O,O,O,f6_TR);
TSBN a,n EorratIVC'TE TSBN,a,f4_TSBN,n);
TSF yrbis formatl'(f T§F,O,kTSF,i,s,y);
TSM bi formatlVA'(fTSM ia TSM,b,i);
TVI a,b forrnatV'(f TV,a,f2_;FV,b,O,O,O,f6_TV);
WFBP ay,b,s fortat'(f-1FBP,a,k WFBP,b,i WFBP,s,y);
WFM a,y,b,s formatl'(f -WFM,a,k_- WFM,b,i-WFM,s,y);
XOR aly,,b,s forrat'(f XOR,a,k XOR,b,is,y);
XR y,b,s formatl'(f XR,O,kXR,b,ijs,y);
XRL y,b,s formatl'(f-hRL,O,k-XRL,b,i,s,y)';
XS sy,b formatl'(E XS,aXS,k XS,b,i,sy);

-- ---- -------------------------

Table F-3f - Machine Code Instructions (Continued)

F-46 F.13 Machine Code Insertions

Ada//L PSE Handbcok Version 3.5
29 March 1991

--------------------- - --------

Option Function
--

EXECUTIVE Enables pragma EXECUTIVE and allows
visibility to units which have been
compiled with the RTE ONLY option.
Default: NO EXECUTIVE

MEASURE Generates code to monitor execution
frequency at the subprogram level for
the current unit. Default: NO MEASURE

NO CHECKS NO CHECKS suppresses all run-time
error checking. CHECKS provides
run-time error checking.
Default: CHECKS

NO CODE ON WARNING
NO CODE ON WARNING means no code is
generated when there is a diagnostic
of severity WARNING or higher.
CODE ON WARNING generates code
only if- there are no diagnostics
of a severity higher than WARNING.
Default: CODEONWARNING

NO CONTAINER GENERATION
NO CONTAINERGENERATION means that no
container is produced even if there
are nc diagnostics.
CONTAINER GENERATION produces a
container if diagnostic serverity
permits.
Default: CONTAINERGENERATION

4--

Table F-4a - Special Processing Options

-.14 Compiler Options F-47

Version 3.5 Ada/L PSE Handbook
29 March 1991

-------------- ---
Option Function
--

NO DEBUG :f NO DEBUG is specified, only that
information needed to link, export
and execute the current unit is
included in the compiler output.

With the DEBUG option in effect,
internal representations and
additional symbolic information are
stored in the container.
Default: DEBUG

NOTRACE BACK Disables the location of source
exceptions that are not handled by
built-in exception handlers.
Default: TRACEBACK

OPTIMIZE Enables global optimizations in
accordance with the optimization
pragmas specified in the source
program. If the pragma OPTIMIZE is
not included, the optimizations
emphasize TIME over SPACE.
When NO OPTIMIZE is in effect, no
global optimizations are performed,
regardless of the pragmas specified.
Default: NO OPTIMIZE

RTE ONLY Restricts visibility of this unit
only to those units compiled with
the EXECUTIVE option.
Default: NORTEONLY

--±

Table F-5b - Special Processing Options (Continued)

F-48 F.14 Compiler Options

AdaiL PSE Handbook Version 3.5
29 March 1991

+---

Option Function
--

ATTRIBUTE Produces a Symbol Attribute Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS REFERENCE are specified.)
Default: NO ATTRIBUTE.

CROSSREFERENCE Produces a Cross-Reference Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS REFERENCE are specified.)
Default: NOCROSSREFERENCE.

DIAGNOSTICS Produces a Diagnostic Summary Listing.
Default: NO DIAGNOSTICS.

MACHINE CODE Produces a Machine Code Listing if
code is generated. Code is generated
when CONTAINER GENERATION option is
in effect and TI) there are no
diagnostics of severity ERROR, SYSTEM,
or FATAL, and/or (2) NO CODE ON WARNING
option is in effect and there are no
diagnostics of severity higher than
NOTE. A diagnostic of severity NOTE
is reported when a Machine Code
Listing is requested and no code is
generated. OCTAL is an additional
option that may be used with
MACHINE CODE to output ocatal values
on the listing instead of hex values.
Default: NOMACHINECODE.

NOTES Includes diagnostics of NOTE severity
level in the Source Listing.
Default: NONOTES.

SOURCE Produces listing of Ada source
statements. Default: NOSOURCE.

SUMMARY Produces a Summary Listing; always
produced when there are errors in the
compilation. Default: NOSUMMARY.

+--

Table F-6 - Ada/L Listing Control Options

F.14 Compiler Options F-49

Version 3.5 Ada/L PSE Handbook
29 March 1991

Option Function I

MSG Sends error messages and the
Diagnostic Summary Listing to the
file specified. The default is to
send error messages and the Diagnostic
Summary Listing to Message Output
(usually the terminal).

OUT Sends all selected listings to a
single file specified. The default
is to send listings to Standard
Output (ususally the terminal).

--

Table F-7 - Control Part (Redirection) Options

F-50 F.14 Compilgr Options

PAGES DELIBRATELY LEFT
BLANK NOT

ESSENTIAL To REPORT PER
TELECON

DAN LEHIMANN ADA OFC IDA
DC 10/29/91~

F-52

PAGES DELIBRATELY LEFT BLANK
NO!

ESSENTIAL TO REPORT PER TELECON

DAN LEHMANN ADA OFC IDA
DC 10/29/91

F-51

Ada/! PSE Handbook Version 3.5
29 March 1991

F.16 Linke-eOptions

Option Function
-- ---

DEBUG Produces a linked container to be
debugged. Default: NODEBUG.

MEASURE Produces a linked container to be
analyzed. Default: NO MEA.URE.

PARTIAL Produces an incomplete linked
container with unresolved references.
Default: NOPARTIAL.

RTL SELECTIVE Similar to the SELECTIVE option
except that is only refers to RTLIB
units. This option is not supported
during phase links.
Default: NORTLSELECTIVE.

SEARCH Explicitly searches for the units to
be included in the linked container.
Default: SEARCH for final links;
NOSEARCH for phase links.

SELECTIVE Maps into the program only the
subprograms called by the main
subprogram. Default: SELECTIVE

for final links; NO SELECTIVE
for phase links.

--

Table F-10 - Ada/L Linker Special Processing Options

F.16 Linker Options F-53

Version 3.5 AdaiL PSE Handbook
29 March 1991

Option Function

No option Linker summary listing always
produced.

DEBUGMAP Generates a debugmap listing.
Default: NODEBUGMAP.

ELABLS' Generates an elaboration orderlisting. Default: NO ELAB LIST.

LOADMAP Generates a loadmap listing.
Default:NOLOADMAP.

LOCAL SYMBOLS Generates a symbols listing with
all internal as well as external
definitions in the program.
LOCAL SYMBOLS is to be used in
conjunction with the SYMBOLS
option. if LOCAL SYMBOLS is
specified with NO SYMBOLS, a
WARNING is produced and the SYMBOLS
option is activated.
Default: NOLOCALSYMBOLS

SYMBOLS Produces a Linker symbols listing.
Default: NOSYMBOLS.

UNITS Produces a Linker units listing.
Default: NOUNITS.

Table F-11 - Linker Listings Options

F-54 F.16 Linker Options

Ada/L PSE Handbook Version 3.3
29 March 1991

Option Function

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

OUT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

--

Table F-12 - Control Part (Redirection) Options

F.16 Linker Options F-55

Version 3.5 Ada/L PSE Handbook
29 March 1991

F. 17 ExportetO-tions

Option Function I

DEBUG Permits the generation of a lcad
module with all debugging facilities
available. When NO DEBUG is
specified or is in effect by default,
no debugging facilities are made
available. Export the program for
debugging with either the Run-Time
Debugger (RTD) or the Embedded Target
Debugger (ETD).
Default: NO DEBUG.

DYNAMIC Deferred.

LOAD Deferred.

MEASURE Permits the generation of a load
module with all performance
measurement facilities available.
When NO MEASURE is specified or is in
effect by default, no performance
measurement facilities are made
available. Default: NOMEASURE

* REVO in conjunction with the SIM IMAGE
argument to the IMAGE named parameter,
this option specifies production of a
Target System File suitable for input
to Revision 0 of SIM/L and PORTAL/43.

Table F-13 - Ada/L Special Processing Options

F-56 F.17 Exporter Options

Ada/L PSE Handbook Version 3.5
29 March 1991

I Option Function
-- --

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output

(usually tne terminal).

I OUT Sends all selected listings to the
single file specified. The default
iis to send listings to Standard
Output (usually the terminal).

Table F-14 - Control Part (Redirection) Options

F.17 Exporter Options F-57

Version 3.5 Ada/L PSE Handbook
29 March 1991

------------ ---
otion Function

DEBUGMAP Generates a segment-by-segmenz listing
--at describes how the units are mapped
onto hardware. Default: NO DEBUGMIAP.

_OADMAP Generates a listings that describes how
zhe units are mapped onto the hardware.
Default: NO LOADMAP.

LOCAL SYMBOLS As an option in addition to SYMBOLS
listing, causes the symbols listing to
include all internal as well as external
definizions in the program.
Default: NO LOCAL SYMBOLS

NO DETAILED Suppresses the listing of subprograms
contained within each EXEC psect in
the DEBUGMAP and LOADMAP listings.
Default: DETAILED.

RE:xEc Produces executive listings instead
of application listings. it can only
be used with the LOADMAP and DEBUGMAP
options (e.g., /LOADMAP/RTEXEC).
Default: NO RTEXEC

SYMBOLS Generates a symbols listing of all
external definitions in the program.
Default: NOSYMBOLS.

UNTS Generates a listing of all units.
Default: NO UNITS.

Table F-15 - Ada/L Exporter Listing Options

F-58 F.17 Exporter Options

